Do you want to publish a course? Click here

High Velocity Line Emission in the NLR of NGC 4151

93   0   0.0 ( 0 )
 Added by J. B. Hutchings
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Narrow-band imaging of the nuclear region of NGC 4151 with the Hubble Space Telescope is presented. The filter bandpasses isolate line emission in various high velocity ranges in several ions. Slitless and long-slit spectra of the region with the Space Telescope Imaging Spectrograph also indicate the locations of high velocity gas. These emission regions are faint and are interspersed among the bright emission clouds seen in direct images. They have radial velocities up to 1400 km/s relative to the nucleus, and are found in both approach and recession on both sides of the nucleus. This contrasts strongly with the bright emission line clouds which have been discussed previously as showing bidirectional outflow with velocities within 400 km/s of the nucleus. We discuss the possible connections of the high velocity material with the radio jet and the nuclear radiation.



rate research

Read More

We present the results from a detailed kinematic analysis of both ground-based, and Hubble Space Telescope/Faint Object Camera long-slit spectroscopy at sub-arcsec spatial resolution, of the narrow-line region of NGC 4151. In agreement with previous work, the extended emission gas (R > 4) is found to be in normal rotation in the galactic plane, a behaviour that we were able to trace even across the nuclear region, where the gas is strongly disturbed by the interaction with the radio jet, and connects smoothly with the large scale rotation defined by the neutral gas emission. The HST data, at 0.029 spatial resolution, allow us for the first time to truly isolate the kinematic behaviour of the individual clouds in the inner narrow-line region. We find that, underlying the perturbations introduced by the radio ejecta, the general velocity field can still be well represented by planar rotation down to a radius of ~ 0.5 (30 pc), distance at which the rotation curve has its turnover. The most striking result that emerges from our analysis is that the galaxy potential derived fitting the rotation curve changes from a dark halo at the ENLR distances to dominated by the central mass concentration in the NLR, with an almost Keplerian fall-off in the 1< R < 4 interval. The observed velocity of the gas at 0.5 implies a mass of M ~ 10E9 M(sol) within the inner 60 pc. The presence of a turnover in the rotation curve indicates that this central mass concentration is extended. The first measured velocity point (outside the region saturated by the nucleus) would imply an enclosed mass of ~ 5E7 M(sol) within R ~ 0.15 (10 pc) which represents an upper limit to any nuclear point mass.
We have analysed Chandra/High Energy Transmission Gratings spectra of the X-ray emission line gas in the Seyfert galaxy NGC 4151. The zeroth order spectral images show extended H- and He-like O and Ne, up to a distance $r sim$ 200 pc from the nucleus. Using the 1st order spectra, we measure an average line velocity $sim -230$ km s$^{-1}$, suggesting significant outflow of X-ray gas. We generated Cloudy photoionisation models to fit the 1st order spectra. We required three emission-line components, with column density, log$N_{H}$, and ionisation parameter, log$U$, of 22.5/1.0, 22.5/0.19, and 23.0/-0.50, respectively. To estimate the total mass of ionised gas and the mass outflow rates, we applied the model parameters to fit the zeroth order emission-line profiles of Ne~IX and Ne~X. We determined the total mass of $approx 5.4 times$ 10$^{5}$ M_sun. Assuming the same kinematic profile as that for the [O~III] gas, the peak X-ray mass outflow rate was $approx 1.8$ M_sun yr$^{-1}$, at $r sim 150$ pc. The total mass and mass outflow rates are similar to those determined using [O~III], implying that the X-ray gas is a major outflow component. However, unlike the optical outflows, the X-ray outflow rate does not drop off at $r >$ 100 pc, which suggests that it may have a greater impact on the host galaxy.
102 - James T. Radomski 2002
We present subarcsecond resolution mid infrared images of NGC 4151 at 10.8 micron and 18.2 micron. These images were taken with the University of Florida mid-IR camera/spectrometer OSCIR at the Gemini North 8-m telescope. We resolve emission at both 10.8 micron and 18.2 micron extending ~ 3.5 across at a P.A. of ~ 60 degrees. This coincides with the the narrow line region of NGC 4151 as observed in [OIII] by the Hubble Space Telescope. The most likely explanation for this extended mid-IR emission is dust in the narrow line region heated by a central engine. We find no extended emission associated with the proposed torus and place an upper limit on its mid-IR size of less than or equal to ~ 35 pc.
We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight years and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3 cm^-3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionisation parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.
The centre of NGC 4151 has been observed in the J-band with the SMIRFS integral field unit (IFU) on the UK Infrared Telescope. A map of [Fe II] emission is derived, and compared with the distributions of the optical narrow line region and radio jet. We conclude that, because the [Fe II] emission is associated more closely with the visible narrow-line region than with the radio jet, it arises mainly through photoionization of gas by collimated X-rays from the Seyfert nucleus. The velocity field and strength with respect to [Pa B] are found to be consistent with this argument. The performance of the IFU is considered briefly, and techniques for observation and data analysis are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا