No Arabic abstract
We present subarcsecond resolution mid infrared images of NGC 4151 at 10.8 micron and 18.2 micron. These images were taken with the University of Florida mid-IR camera/spectrometer OSCIR at the Gemini North 8-m telescope. We resolve emission at both 10.8 micron and 18.2 micron extending ~ 3.5 across at a P.A. of ~ 60 degrees. This coincides with the the narrow line region of NGC 4151 as observed in [OIII] by the Hubble Space Telescope. The most likely explanation for this extended mid-IR emission is dust in the narrow line region heated by a central engine. We find no extended emission associated with the proposed torus and place an upper limit on its mid-IR size of less than or equal to ~ 35 pc.
We present the first results of the Hubble Space Telescope/Faint Object Camera long-slit spectroscopy of the inner 8 of the Narrow Line Region of NGC 4151 at a spatial resolution of 0.029. The emission gas is characterized by an underlying general orderly behaviour, consistent with galactic rotation, over which are superposed kinematically distinct and strongly localized emission structures. High velocity components shifted up to ~ 1500 km/s from the systemic velocity are seen, associated with individual clouds located preferentially along the edges of the radio knots. Off-nuclear blue continuum emission is also observed, associated with the brightest emission line clouds. Emission line ratios like [NeIII]3869/[OII]3727, and [OII]3727/Hbeta are observed to vary substantially between individual clouds. We advance the general picture that, as in other Seyfert galaxies observed with HST (e.g., NGC 1068, Mrk 573), the interaction of the radio jet with the ambient gas strongly influences both the morphology and the physical conditions of the NLR.
We present a simple kinematic model for the narrow-line region (NLR) of the Seyfert 1 galaxy NGC 4151, based on our previous observations of extended [O III] emission with the Space Telescope Imaging Spectrograph (STIS). The model is similar to a biconical radial outflow model developed for the Seyfert 2 galaxy NGC 1068, except that the bicone axis is tilted much more into our line of sight (40 degrees out of the plane of the sky instead of 5 degrees), and the maximum space velocities are lower (750 km/s instead of 1300 km/s. We find evidence for radial acceleration of the emission-line knots to a distance of 160 pc, followed by deceleration that approaches the systemic velocity at a distance of 290 pc (for a distance to NGC 4151 of 13.3 Mpc). Other similarities to the kinematics of NGC 1068 are: 1) there are a number of high-velocity clouds that are not decelerated, suggesting that the medium responsible for the deceleration is patchy, and 2) the bicone in NGC 4151 is at least partially evacuated along its axis. Together, these two Seyfert galaxies provide strong evidence for radial outflow (e.g., due to radiation and/or wind pressure) and against gravitational motion or expansion away from the radio jets as the principal kinematic component in the NLR.
We present the first extensive study of the coronal line variability in an active galaxy. Our data set for the nearby source NGC 4151 consists of six epochs of quasi-simultaneous optical and near-infrared spectroscopy spanning a period of about eight years and five epochs of X-ray spectroscopy overlapping in time with it. None of the coronal lines showed the variability behaviour observed for the broad emission lines and hot dust emission. In general, the coronal lines varied only weakly, if at all. Using the optical [Fe VII] and X-ray O VII emission lines we estimate that the coronal line gas has a relatively low density of n~10^3 cm^-3 and a relatively high ionisation parameter of log U~1. The resultant distance of the coronal line gas from the ionising source is about two light years, which puts this region well beyond the hot inner face of the obscuring dusty torus. The high ionisation parameter implies that the coronal line region is an independent entity rather than part of a continuous gas distribution connecting the broad and narrow emission line regions. We present tentative evidence for the X-ray heated wind scenario of Pier & Voit. We find that the increased ionising radiation that heats the dusty torus also increases the cooling efficiency of the coronal line gas, most likely due to a stronger adiabatic expansion.
We present a study of the distribution of [O III] $lambda$5007 and [O II] $lambda$3727 emission in the Narrow Line Region (NLR) of the Seyfert 1 galaxy NGC 4151. While the NLR of NGC 4151 exhibits an overall structure consistent with the unified model of Seyfert galaxies, narrow-band [O III] and [O II] images obtained with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope reveal significant emission from outside the the emission-line bi-cone. The [O III]/[O II] ratios are lower in these regions, consistent with a weaker ionizing flux. We performed a photoionization modeling analysis of the emission-line gas within a series of annuli, centered on the the central continuum source, with inner radii from 13 to 90 pc. The gas is ionized by radiation that has been attenuated by a relatively highly-ionized absorber (HABS), which completely covers the central source, and a lower-ionization absorber (LABS), which has a covering factor ranging from 0 to 1. We found that the [O III]/[O II] ratios are well fit by assuming that, within each segment of an annulus, some fraction of the NLR gas is completely within the shadow of LABS, while the rest is irradiated by the continuum filtered only by HABS. This suggests that the structure of the NLR is due to filtering of the ionizing radiation by ionized gas, consistent with disk-wind models. One possible scenario is that the low-ionization absorbers are dense knots of gas swept up by a wind.