Do you want to publish a course? Click here

ASCA observations of the young rotation-powered pulsars PSR B1046-58 and PSR B1610-50

178   0   0.0 ( 0 )
 Added by Michael Pivovaroff
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present X-ray observations of two young energetic radio pulsars, PSRs B1046-58 and B1610-50, and their surroundings, using archival data from the Advanced Satellite for Cosmology and Astrophysics (ASCA). The energetic pulsar PSR B1046-58 is detected in X-rays with a significance of 4.5 sigma. The unabsorbed flux, estimated assuming a power-law spectrum and a neutral hydrogen column density N_H of 5E21 cm^-2 is (2.5 +/- 0.3) x 10E-13 ergs/cm^2/s in the 2-10 keV band. Pulsed emission is not detected; the pulsed fraction is less than 31% at the 90% confidence level for a 50% duty cycle. We argue that the emission is best explained as originating from a pulsar-powered synchrotron nebula. The X-ray counterpart of the pulsar is the only hard source within the 95% error region of the previously unidentified gamma-ray source 3EG J1048-5840. This evidence supports the results of Kaspi et al. (1999), who in a companion paper, suggest that PSR B1046-58 is the counterpart to 3EG J1048-5840. X-ray emission from PSR B1610-50 is not detected. Using similar assumptions as above, the derived 3 sigma upper limit for the unabsorbed 2-10 keV X-ray flux is 1.5E-13 ergs/cm^2/s. We use the flux limit to estimate the pulsars velocity to be less than ~170 km/s, casting doubt on a previously reported association between PSR B1610-50 and supernova remnant Kes 32. Kes 32 is detected, as is evident from the correlation between X-ray and radio emission. The ASCA images of PSR B1610-50 are dominated by mirror-scattered emission from the X-ray-bright supernova remnant RCW 103, located 33 away. We find no evidence for extended emission around either pulsar, in contrast to previous reports of large nebulae surrounding both pulsars.



rate research

Read More

295 - T. Mineo , E.Massaro , G.Cusumano 2002
We report the results of the observations of the three gamma-ray pulsars PSR B0656+14, PSR B1055-52 and PSR B1706-44 performed with BeppoSAX. We detected a pulsed emission only for PSR B1055-52: in the range 0.1-6.5 keV the pulse profile is sinusoidal and the statistical significance is 4.5 sigma. The pulsed fraction was estimated 0.64+/-0.17. This pulsation was detected also at energies greater than 2.5 keV suggesting either a non-thermal origin or a quite high temperature region on the neutron star surface. Spectral analysis showed that only the X-ray spectrum of PSR B1706-44 can be fitted by a single power-law component, while that of PSR B1055-52 requires also a blackbody component (kT = 0.075 keV) and that of PSR B0656+14 two blackbody components (kT_1 = 0.059, kT_2 = 0.12 keV).
We present the results of new Agile observations of PSR B1509-58 performed over a period of 2.5 years following the detection obtained with a subset of the present data. The modulation significance of the lightcurve above 30 MeV is at a 5$sigma$ confidence level and the lightcurve is similar to those found earlier by Comptel up to 30 MeV: a broad asymmetric first peak reaching its maximum 0.39 +/- 0.02 cycles after the radio peak plus a second peak at 0.94 +/- 0.03. The gamma-ray spectral energy distribution of the pulsed flux detected by Comptel and Agile is well described by a power-law (photon index alpha=1.87+/-0.09) with a remarkable cutoff at E_c=81 +/- 20 MeV, representing the softest spectrum observed among gamma-ray pulsars so far. The pulsar luminosity at E > 1 MeV is $L_{gamma}=4.2^{+0.5}_{-0.2} times10^{35}$ erg/s, assuming a distance of 5.2 kpc, which implies a spin-down conversion efficiency to gamma-rays of $sim 0.03$. The unusual soft break in the spectrum of PSR B1509-58 has been interpreted in the framework of polar cap models as a signature of the exotic photon splitting process in the strong magnetic field of this pulsar. In this interpretation our spectrum constrains the magnetic altitude of the emission point(s) at 3 km above the neutron star surface, implying that the attenuation may not be as strong as formerly suggested because pair production can substitute photon splitting in regions of the magnetosphere where the magnetic field becomes too low to sustain photon splitting. In the case of an outer-gap scenario, or the two pole caustic model, better constraints on the geometry of the emission would be needed from the radio band in order to establish whether the conditions required by the models to reproduce Agile lightcurves and spectra match the polarization measurements.
56 - Andrei P. Igoshev 2020
Understanding the natal kicks, or birth velocities, of neutron stars are essential for understanding the evolution of massive binaries as well as double neutron star formation. We use maximum likelihood methods as published in Verbunt et al. to analyse a new large dataset of parallaxes and proper motions measured by Deller et al. This sample is roughly three times larger than number of measurements available before. For both the complete sample and its younger part (spin-down ages $tau < 3$ Myr), we find that a bimodal Maxwellian distribution describes the measured parallaxes and proper motions better than a single Maxwellian with probability of 99.3 and 95.0 per cent respectively. The bimodal Maxwellian distribution has three parameters: fraction of low-velocity pulsars and distribution parameters $sigma_1$ and $sigma_2$ for low and high-velocity modes. For a complete sample, these parameters are as follows: $42_{-15}^{+17}$ per cent, $sigma_1=128_{-18}^{+22}$ km s$^{-1}$ and $sigma_2 = 298pm 28$ km s$^{-1}$. For younger pulsars, which are assumed to represent the natal kick, these parameters are as follows: $20_{-10}^{+11}$ per cent, $sigma_1=56_{-15}^{+25}$ km s$^{-1}$ and $sigma_2=336pm 45$ km s$^{-1}$. In the young population, $5pm 3$ per cent of pulsars has velocities less than 60 km s$^{-1}$. We perform multiple Monte Carlo tests for the method taking into account realistic observational selection. We find that the method reliably estimates all parameters of the natal kick distribution. Results of the velocity analysis are weakly sensitive to the exact values of scale-lengths of the Galactic pulsar distribution.
The aim of the present paper is to investigate a possible contribution of the rotation-powered pulsars and pulsar wind nebulae to the population of ultraluminous X-ray sources (ULXs). We first develop an analytical model for the evolution of the distribution function of pulsars over the spin period and find both the steady-state and the time-dependent solutions. Using the recent results on the X-ray efficiency dependence on pulsar characteristic age, we then compute the X-ray luminosity function (XLF) of rotation-powered pulsars. In a general case it has a broken power-law shape with a high luminosity cutoff, which depends on the distributions of the birth spin period and the magnetic field. Using the observed XLF of sources in the nearby galaxies and the condition that the pulsar XLF does not exceed that, we find the allowed region for the parameters describing the birth period distribution. We find that the mean pulsar period should be greater than 10-40 ms. These results are consistent with the constraints obtained from the X-ray luminosity of core-collapse supernovae. We estimate that the contribution of the rotation-powered pulsars to the ULX population is at a level exceeding 3 per cent. For a wide birth period distribution, this fraction grows with luminosity and above 10E40 erg/s pulsars can dominate the ULX population.
We report on sensitive phase-referenced and gated 1.4-GHz VLBI radio observations of the pulsar PSR J0205+6449 in the young pulsar-wind nebula 3C 58, made in 2007 and 2010. We employed a novel technique where the ~105-m Green Bank telescope is used simultaneously to obtain single-dish data used to determine the pulsars period as well as to obtain the VLBI data, allowing the VLBI correlation to be gated synchronously with the pulse to increase the signal-to-noise. The high timing noise of this young pulsar precludes the determination of the proper motion from the pulsar timing. We derive the position of the pulsar accurate at the milliarcsecond level, which is consistent with a re-determined position from the Chandra X-ray observations. We reject the original tentative optical identification of the pulsar by Shearer and Neustroev (2008), but rather identify a different optical counterpart on their images, with R-band magnitude ~24. We also determine an accurate proper motion for PSR J0205+6449 of (2.3 +- 0.3) mas/yr, corresponding to a projected velocity of only (35 +- 6) km/s for a distance of 3.2 kpc, at p.a. -38 deg. This projected velocity is quite low compared to the velocity dispersion of known pulsars of ~200 km/s. Our measured proper motion does not suggest any particular kinematic age for the pulsar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا