Do you want to publish a course? Click here

Agile Observations of the Soft Gamma-Ray Pulsar PSR B1509-58

270   0   0.0 ( 0 )
 Added by Maura Pilia
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of new Agile observations of PSR B1509-58 performed over a period of 2.5 years following the detection obtained with a subset of the present data. The modulation significance of the lightcurve above 30 MeV is at a 5$sigma$ confidence level and the lightcurve is similar to those found earlier by Comptel up to 30 MeV: a broad asymmetric first peak reaching its maximum 0.39 +/- 0.02 cycles after the radio peak plus a second peak at 0.94 +/- 0.03. The gamma-ray spectral energy distribution of the pulsed flux detected by Comptel and Agile is well described by a power-law (photon index alpha=1.87+/-0.09) with a remarkable cutoff at E_c=81 +/- 20 MeV, representing the softest spectrum observed among gamma-ray pulsars so far. The pulsar luminosity at E > 1 MeV is $L_{gamma}=4.2^{+0.5}_{-0.2} times10^{35}$ erg/s, assuming a distance of 5.2 kpc, which implies a spin-down conversion efficiency to gamma-rays of $sim 0.03$. The unusual soft break in the spectrum of PSR B1509-58 has been interpreted in the framework of polar cap models as a signature of the exotic photon splitting process in the strong magnetic field of this pulsar. In this interpretation our spectrum constrains the magnetic altitude of the emission point(s) at 3 km above the neutron star surface, implying that the attenuation may not be as strong as formerly suggested because pair production can substitute photon splitting in regions of the magnetosphere where the magnetic field becomes too low to sustain photon splitting. In the case of an outer-gap scenario, or the two pole caustic model, better constraints on the geometry of the emission would be needed from the radio band in order to establish whether the conditions required by the models to reproduce Agile lightcurves and spectra match the polarization measurements.



rate research

Read More

We present the results of 2.5 years of AGILE observations of PSR B1509-58 and of the same interval of Fermi observations. The modulation significance of AGILE light curve above 30 MeV is at a 5 sigma confidence level and the light curve shows a broad asymmetric first peak reaching its maximum $0.39 pm 0.02$ cycles after the radio peak plus a second peak at$0.94 pm 0.03$. The gamma-ray spectral energy distribution of pulsed flux is well described by a power-law (photon index $alpha=1.87pm0.09$) with a remarkable cutoff at below 100 MeV, representing the softest spectrum observed among gamma-ray pulsars so far. The unusual soft break in the spectrum of PSR B1509-58 has been interpreted in the framework of polar cap models as a signature of the exotic photon splitting process in the strong magnetic field of this pulsar. In the case of an outer-gap scenario, or the two pole caustic model, better constraints on the geometry of the emission would be needed from the radio band in order to establish whether the conditions required by the models to reproduce AGILE light curves and spectra match the polarization measurements.
The gamma-ray pulsar PSR B1509-58 and its surrounding nebulae have been observed with the CANGAROO 3.8m imaging atmospheric Cherenkov telescope. The observations were performed from 1996 to 1998 in Woomera, South Australia, under different instrumental conditions with estimated threshold energies of 4.5 TeV (1996), 1.9 TeV (1997) and 2.5 TeV (1998) at zenith angles of ~30 deg. Although no strong evidence of the gamma-ray emission was found, the lowest energy threshold data of 1997 showed a marginal excess of gamma-ray--like events at the 4.1 sigma significance level. The corresponding gamma-ray flux is calculated to be (2.9 +/- 0.7) * 10^{-12}cm^{-2}s^{-1} above 1.9 TeV. The observations of 1996 and 1998 yielded only upper limits (99.5% confidence level) of 1.9 * 10^{-12}cm^{-2}s^{-1} above 4.5 TeV and 2.0 * 10^{-12}cm^{-2}s^{-1} above 2.5 TeV, respectively. Assuming that the 1997 excess is due to Very High-Energy (VHE) gamma-ray emission from the pulsar nebula, our result, when combined with the X-ray observations, leads to a value of the magnetic field strength ~5 micro G. This is consistent with the equipartition value previously estimated in the X-ray nebula surrounding the pulsar. No significant periodicity at the 150ms pulsar period has been found in any of the three years data. The flux upper limits set from our observations are one order of magnitude below previously reported detections of pulsed TeV emission.
285 - D. Marsden 1997
We present the results of observations of the PSR B1509$-$58/MSH 15$-$52 system in X-rays ($2-250$ keV) by the Rossi X-ray Timing Explorer. The spectra of the peak of the pulsed component (radio phase $0.17-0.53$) is fit by a power law of photon index $1.36pm0.01$, with no evidence of a high energy spectral break seen up to $sim200$ keV. For the off-pulse spectral component, the spectrum from $2-250$ keV is fit by a power law of photon index $2.215pm0.005$. An iron emission line at 6.7 keV with an equivalent width of 129 eV improves the fit, but only at a marginal significance. Thermal bremsstrahlung and Raymond-Smith models produce much worse fits to the unpulsed data. The lack of a high energy spectral break in the pulsed emission implies an efficiency of $geq 3%$ in the conversion of pulsar spindown energy to pulsed X-rays in the system.
We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared as the most significant remaining unidentified gamma-ray source without a known association in the second Fermi-LAT source catalog (2FGL) and was among the top ten most significant unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic, isolated pulsar, with a spin frequency of $8.9$ Hz, a characteristic age of $49$ kyr, and spin-down power $1.0 times 10^{36}$ erg s$^{-1}$. In 2009 August it suffered one of the largest glitches detected from a gamma-ray pulsar ($Delta f / f approx 4.5times10^{-6}$). Remaining undetected in dedicated radio follow-up observations, the pulsar is likely radio-quiet. An off-pulse analysis of the gamma-ray flux from the location of PSR J1906+0722 revealed the presence of an additional nearby source, which may be emission from the interaction between a neighboring supernova remnant and a molecular cloud. We discuss possible effects which may have hindered the detection of PSR J1906+0722 in previous searches and describe the methods by which these effects were mitigated in this survey. We also demonstrate the use of advanced timing methods for estimating the positional, spin and glitch parameters of difficult-to-time pulsars such as this.
102 - H.H.Wang , J. Takata. 2018
PSR~J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011, October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and is probably originated from the pulsar wind nebula as reported by Hui et al (2015). The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ~4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا