Do you want to publish a course? Click here

The Anisotropy of Cosmic Ray Arrival Direction around 10^18eV

276   0   0.0 ( 0 )
 Added by Masahiro Teshima
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anisotropy in the arrival directions of cosmic rays around 10^{18}eV is studied using data from the Akeno 20 km^2 array and the Akeno Giant Air Shower Array (AGASA), using a total of about 216,000 showers observed over 15 years above 10^{17}eV. In the first harmonic analysis, we have found significant anisotropy of $sim$ 4 % around 10^{18}eV, corresponding to a chance probability of $sim 10^{-5}$ after taking the number of independent trials into account. With two dimensional analysis in right ascension and declination, this anisotropy is interpreted as an excess of showers near the directions of the Galactic Center and the Cygnus region. This is a clear evidence for the existence of the galactic cosmic ray up to the energy of 10^{18}eV. Primary particle which contribute this anisotropy may be proton or neutron.



rate research

Read More

Anisotropy in the arrival directions of cosmic rays with energies above 10$^{17}$eV is studied using data from the Akeno 20 km$^2$ array and the Akeno Giant Air Shower Array (AGASA), using a total of about 117,000 showers observed during 11 years. In the first harmonic analysis, we have found strong anisotropy of $sim$ 4% around 10$^{18}$eV, corresponding to a chance probability of 0.2%. With two dimensional analysis in right ascension and declination, this anisotropy is interpreted as an excess of showers near the directions of the Galactic Center and the Cygnus region.
In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33$times 10^{9}$ muon events with a median angular resolution of $sim3^{circ}$ degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3$sigma$. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
The High-Altitude Water Cherenkov (HAWC) Observatory is sensitive to gamma rays and charged cosmic rays at TeV energies. The detector is still under construction, but data acquisition with the partially deployed detector started in 2013. An analysis of the cosmic-ray arrival direction distribution based on $4.9times 10^{10}$ events recorded between June 2013 and February 2014 shows anisotropy at the $10^{-4}$ level on angular scales of about $10^circ$. The HAWC cosmic-ray sky map exhibits three regions of significantly enhanced cosmic-ray flux; two of these regions were first reported by the Milagro experiment. A third region coincides with an excess recently reported by the ARGO-YBJ experiment. An angular power spectrum analysis of the sky shows that all terms up to $ell=15$ contribute significantly to the excesses.
170 - A.V. Glushkov 2012
Results are presented that were obtained by analysing the arrival directions of E0 > 8x10**18 eV primary cosmic rays recorded at the Yakutsk array over the period between 1974 and 2003 and at the SUGAR array (Australia). The greatest primary cosmic ray flux is shown to arrive from the region of visible intersection of the planes of the Galaxy and the Supergalaxy (local supercluster of galaxies) at a galactic longitude of about 137 degres. On a global scale, the lowest temperature of the cosmic microwave background is typical of this region.
The amplitude and phase of the cosmic ray anisotropy are well established experimentally between 10^{11} eV and 10^{14} eV. The study of their evolution into the energy region 10^{14}-10^{16} eV can provide a significant tool for the understanding of the steepening (knee) of the primary spectrum. In this letter we extend the EAS-TOP measurement performed at E_0 around 10^{14} eV, to higher energies by using the full data set (8 years of data taking). Results derived at about 10^{14} and 4x10^{14} eV are compared and discussed. Hints of increasing amplitude and change of phase above 10^{14} eV are reported. The significance of the observation for the understanding of cosmic ray propagation is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا