The High-Altitude Water Cherenkov (HAWC) Observatory is sensitive to gamma rays and charged cosmic rays at TeV energies. The detector is still under construction, but data acquisition with the partially deployed detector started in 2013. An analysis of the cosmic-ray arrival direction distribution based on $4.9times 10^{10}$ events recorded between June 2013 and February 2014 shows anisotropy at the $10^{-4}$ level on angular scales of about $10^circ$. The HAWC cosmic-ray sky map exhibits three regions of significantly enhanced cosmic-ray flux; two of these regions were first reported by the Milagro experiment. A third region coincides with an excess recently reported by the ARGO-YBJ experiment. An angular power spectrum analysis of the sky shows that all terms up to $ell=15$ contribute significantly to the excesses.
After two years of operation, the High-Altitude Water Cherenkov (HAWC) Observatory has analyzed the TeV cosmic-ray sky over an energy range between $2.0$ and $72.8$ TeV. The HAWC detector is a ground-based air-shower array located at high altitude in the state of Puebla, Mexico. Using 300 light-tight water tanks, it collects the Cherenkov light from the particles of extensive air showers from primary gamma rays and cosmic rays. This detection method allows for uninterrupted observation of the entire overhead sky (2~sr instantaneous, 8.5~sr integrated) in the energy range from a few TeV to hundreds of TeV. Like other detectors in the northern and southern hemisphere, HAWC observes an energy-dependent anisotropy in the arrival direction distribution of cosmic rays. The observed cosmic-ray anisotropy is dominated by a dipole moment with phase $alphaapprox40^{circ}$ and amplitude that slowly rises in relative intensity from $8times10^{-4}$ at 2 TeV to $14times10^{-4}$ around 30.3 TeV, above which the dipole decreases in strength. A significant large-scale ($>60^{circ}$ in angular extent) signal is also observed in the quadrupole and octupole moments, and significant small-scale features are also present, with locations and shapes consistent with previous observations. Compared to previous measurements in this energy range, the HAWC cosmic-ray sky maps improve on the energy resolution and fit precision of the anisotropy. These data can be used in an effort to better constrain local cosmic-ray accelerators and the intervening magnetic fields.
In this paper we report the first observation in the Southern hemisphere of an energy dependence in the Galactic cosmic ray anisotropy up to a few hundred TeV. This measurement was performed using cosmic ray induced muons recorded by the partially deployed IceCube observatory between May 2009 and May 2010. The data include a total of 33$times 10^{9}$ muon events with a median angular resolution of $sim3^{circ}$ degrees. A sky map of the relative intensity in arrival direction over the Southern celestial sky is presented for cosmic ray median energies of 20 and 400 TeV. The same large-scale anisotropy observed at median energies around 20 TeV is not present at 400 TeV. Instead, the high energy skymap shows a different anisotropy structure including a deficit with a post-trial significance of -6.3$sigma$. This anisotropy reveals a new feature of the Galactic cosmic ray distribution, which must be incorporated into theories of the origin and propagation of cosmic rays.
Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Using $3 times 10^4$ cosmic rays above $8 times 10^{18}$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$sigma$ level of significance, can be described by a dipole with an amplitude of $6.5_{-0.9}^{+1.3}$% towards right ascension $alpha_{d} = 100 pm 10$ degrees and declination $delta_{d} = -24_{-13}^{+12}$ degrees. That direction indicates an extragalactic origin for these ultra-high energy particles.
Between May 2009 and May 2010, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mille anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15 degrees and 30 degrees. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of 5 weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at right ascension 122.4 degrees and declination -47.4 degrees, extends over at least 20 degrees in right ascension and has a post-trials significance of 5.3 sigma. The origin of this anisotropy is still unknown.
Motivated by the detection of a significant dipole structure in the arrival directions of ultrahigh-energy cosmic rays above 8 EeV reported by the Pierre Auger Observatory (Auger), we search for a large-scale anisotropy using data collected with the surface detector array of the Telescope Array Experiment (TA). With 11 years of TA data, a dipole structure in a projection of the right ascension is fitted with an amplitude of 3.3+- 1.9% and a phase of 131 +- 33 degrees. The corresponding 99% confidence-level upper limit on the amplitude is 7.3%. At the current level of statistics, the fitted result is compatible with both an isotropic distribution and the dipole structure reported by Auger.
A. U. Abeysekara
,R. Alfaro
,C. Alvarez
.
(2014)
.
"Observation of Small-scale Anisotropy in the Arrival Direction Distribution of TeV Cosmic Rays with HAWC"
.
Daniel Fiorino
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا