Do you want to publish a course? Click here

Neutrino-driven supernovae: Boltzmann neutrino transport and the explosion mechanism

392   0   0.0 ( 0 )
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

Core-collapse supernovae are, despite their spectacular visual display, neutrino events. Virtually all of the 10^53 ergs of gravitational binding energy released in the formation of the nascent neutron star is carried away in the form of neutrinos and antineutrinos of all three flavors, and these neutrinos are primarily responsible for powering the explosion. This mechanism depends sensitively on the neutrino transport between the neutrinospheres and the shock. In light of this, we have performed a comparison of multigroup Boltzmann neutrino transport (MGBT) and multigroup flux-limited diffusion (MGFLD) in post-core bounce environments. Differences in the mean inverse flux factors, luminosities, and RMS energies translate to heating rates that are up to 2 times larger for Boltzmann transport, with net cooling rates below the gain radius that are typically 0.8 times the MGFLD rates. These differences are greatest at earlier postbounce times for a given progenitor mass, and for a given postbounce time, greater for greater progenitor mass. The increased differences with increased progenitor mass suggest that the net heating enhancement from MGBT is potentially robust and self-regulated.



rate research

Read More

We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with an ``optimistic 15 solar mass precollapse model, which is representative of the class of stars with compact iron cores. This model is evolved through core collapse and bounce in one dimension using multigroup (neutrino-energy--dependent) flux-limited diffusion (MGFLD) neutrino transport and Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 106 ms after bounce at a time when there is a well-developed gain region, and proceeds for 400 ms. We couple two-dimensional (PPM) hydrodynamics to one-dimensional MGFLD neutrino transport. At 225 ms after bounce we see large-scale convection behind the shock, characterized by high-entropy, mushroom-like, expanding upflows and dense, low-entropy, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial convection velocities become supersonic just below the shock, reaching magnitudes in excess of 10^9 cm/sec. Eventually, however, the shock recedes to smaller radii, and at about 500 ms after bounce there is no evidence in our simulation of an explosion or of a developing explosion. Failure in our ``optimistic 15 solar mass Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.
226 - Marcella Ugliano 2012
We perform hydrodynamic supernova simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 solar masses are compatible with Supernova 1987A. Thus we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors zero-age-main-sequence mass. While all progenitors with masses below about 15 solar masses yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of ~1.2-2.0 solar masses and BH masses >6 solar masses are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10^{50} erg and about 2*10^{51} erg, but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 solar masses. These seem to require an alternative SN mechanism.
126 - Alexander Summa 2015
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection time scales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
Type II-plateau supernovae (SNe IIP) are the most numerous subclass of core-collapse SNe originating from massive stars. In the framework of the neutrino-driven explosion mechanism, we study the SN outburst properties for a red supergiant progenitor model and compare the corresponding light curves with observations of the ordinary Type IIP SN 1999em. Three-dimensional (3D) simulations of (parametrically triggered) neutrino-driven explosions are performed with the (explicit, finite-volume, Eulerian, multifluid hydrodynamics) code PROMETHEUS, using a presupernova model of a 15 Msun star as initial data. At approaching homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the (implicit, Lagrangian radiation-hydrodynamics) code CRAB to follow the blast-wave evolution during the SN outburst. Our 3D neutrino-driven explosion model with an explosion energy of about 0.5x10^51 erg produces Ni-56 in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail of SN 1999em. The considered presupernova model, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1999em, except for those connected to the presupernova structure of the outer stellar layers. Our 3D simulations show that the distribution of Ni-rich matter in velocity space is asymmetric with a strong dipole component that is consistent with the observations of SN 1999em. The monotonic luminosity decline from the plateau to the radioactive tail in ordinary SNe IIP is a manifestation of the intense turbulent mixing at the He/H composition interface.
Accurate neutrino transport has been built into spherically symmetric simulations of stellar core collapse and postbounce evolution. The results of such simulations agree that spherically symmetric models with standard microphysical input fail to explode by the delayed, neutrino-driven mechanism. Independent groups implemented fundamentally different numerical methods to tackle the Boltzmann neutrino transport equation. Here we present a direct and detailed comparison of such neutrino radiation-hydrodynamical simulations for two codes, Agile-Boltztran of the Oak Ridge-Basel group and Vertex of the Garching group. The former solves the Boltzmann equation directly by an implicit, general relativistic discrete angle method on the adaptive grid of a conservative implicit hydrodynamics code with second-order TVD advection. In contrast, the latter couples a variable Eddington factor technique with an explicit, moving-grid, conservative high-order Riemann solver with important relativistic effects treated by an effective gravitational potential. The presented study is meant to test both neutrino radiation-hydrodynamics implementations and to provide a data basis for comparisons and verifications of supernova codes to be developed in the future. Results are discussed for simulations of the core collapse and post-bounce evolution of a 13 solar mass star with Newtonian gravity and a 15 solar mass star with relativistic gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا