Do you want to publish a course? Click here

Progenitor-Explosion Connection and Remnant Birth Masses for Neutrino-Driven Supernovae of Iron-Core Progenitors

285   0   0.0 ( 0 )
 Added by Hans-Thomas Janka
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform hydrodynamic supernova simulations in spherical symmetry for over 100 single stars of solar metallicity to explore the progenitor-explosion and progenitor-remnant connections established by the neutrino-driven mechanism. We use an approximative treatment of neutrino transport and replace the high-density interior of the neutron star (NS) by an inner boundary condition based on an analytic proto-NS core-cooling model, whose free parameters are chosen such that explosion energy, nickel production, and energy release by the compact remnant of progenitors around 20 solar masses are compatible with Supernova 1987A. Thus we are able to simulate the accretion phase, initiation of the explosion, subsequent neutrino-driven wind phase for 15-20 s, and the further evolution of the blast wave for hours to days until fallback is completed. Our results challenge long-standing paradigms. We find that remnant mass, launch time, and properties of the explosion depend strongly on the stellar structure and exhibit large variability even in narrow intervals of the progenitors zero-age-main-sequence mass. While all progenitors with masses below about 15 solar masses yield NSs, black hole (BH) as well as NS formation is possible for more massive stars, where partial loss of the hydrogen envelope leads to weak reverse shocks and weak fallback. Our NS baryonic masses of ~1.2-2.0 solar masses and BH masses >6 solar masses are compatible with a possible lack of low-mass BHs in the empirical distribution. Neutrino heating accounts for SN energies between some 10^{50} erg and about 2*10^{51} erg, but can hardly explain more energetic explosions and nickel masses higher than 0.1-0.2 solar masses. These seem to require an alternative SN mechanism.



rate research

Read More

68 - Thomas Ertl 2016
An erroneous interpretation of the hydrodynamical results led to an incorrect determination of the fallback masses in Ugliano et al. (2012), which also (on a smaller level) affects the neutron star masses provided in that paper. This problem was already addressed and corrected in the follow-up works by Ertl et al. (2015) and Sukhbold et al. (2015). Therefore, the reader is advised to use the new data of the latter two publications. In the remaining text of this Erratum we present the differences of the old and new fallback results in detail and explain the origin of the mistake in the original analysis by Ugliano et al. (2012).
126 - Alexander Summa 2015
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 solar masses, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection time scales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
Using resolved stellar photometry measured from archival HST imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae that took place in galaxies within 8 Mpc. We fit these color-magnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SNe. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SNe progenitor masses are <20 M_sun. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.
205 - Stephen J. Smartt 2009
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1 solar masses, from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc supernovae arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic supernovae are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ~20 solar masses may collapse quietly to black-holes and that the explosions remain undetected. The recent discovery of a class of ultra-bright type II supernovae and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggests some very massive stars do produce highly energetic explosions. The physical mechanism is open to debate and these SNe pose a challenge to stellar evolutionary theory.
We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and 2 supernova impostors, and from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new HST imaging covering these CCSNe. Using these images, we measure resolved stellar photometry for the stars surrounding the locations of the SNe. We then fit the color-magnitude distributions of this photometry with stellar evolution models to determine the ages of any young existing populations present. From these age distributions, we infer the most likely progenitor mass for all of the SNe in our sample. We find ages between 4 and 50 Myr, corresponding to masses from 7.5 to 59 solar masses. There were no SNe that lacked a young population within 50~pc. Our sample contains 4 type Ib/c SNe; their masses have a wide range of values, suggesting that the progenitors of stripped-envelope SNe are binary systems. Both impostors have masses constrained to be $lesssim$7.5 solar masses. In cases with precursor imaging measurements, we find that age-dating and precursor imaging give consistent progenitor masses. This consistency implies that, although the uncertainties for each technique are significantly different, the results of both are reliable to the measured uncertainties. We combine these new measurements with those from our previous work and find that the distribution of 25 core-collapse SNe progenitor masses is consistent with a standard Salpeter power-law mass function, no upper mass cutoff, and an assumed minimum mass for core-collapse of 7.5~M$_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا