Do you want to publish a course? Click here

Localised Neutral Hydrogen Absorption Towards the Radio Jet of Markarian 6

136   0   0.0 ( 0 )
 Added by Jack F. Gallimore
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present 0.15 arcsec (56 pc) resolution MERLIN observations of neutral hydrogen (HI) 21 cm absorption detected towards the arcsecond-scale radio jet of the Seyfert 1.5 galaxy Markarian 6. Absorption is detected only towards a bright, compact radio feature located, in projection, ~ 380 pc north of the likely location of the optical nucleus. Based on comparison with an archival HST image, we propose a geometry in which the HI absorption arises in a dust lane passing north of, but not covering, the optical nucleus, and the southern lobe of the jet is oriented on the near side of the inclined galaxian disk. We note that this result is contrary to previous models which place the extended narrow-line region on the near side of the disk.



rate research

Read More

Many radio galaxies show the presence of dense and dusty gas near the active nucleus. This can be traced by both 21cm HI absorption and soft X-ray absorption, offering new insight into the physical nature of the circumnuclear medium of these distant galaxies. To better understand this relationship, we investigate soft X-ray absorption as an indicator for the detection of associated HI absorption, as part of preparation for the First Large Absorption Survey in HI (FLASH) to be undertaken with the Australian Square Kilometre Array Pathfinder (ASKAP). We present the results of our pilot study using the Boolardy Engineering Test Array, a precursor to ASKAP, to search for new absorption detections in radio sources brighter than 1 Jy that also feature soft X-ray absorption. Based on this pilot survey, we detected HI absorption towards the radio source PKS 1657-298 at a redshift of z = 0.42. This source also features the highest X-ray absorption ratio of our pilot sample by a factor of 3, which is consistent with our general findings that X-ray absorption predicates the presence of dense neutral gas. By comparing the X-ray properties of AGN with and without detection of HI absorption at radio wavelengths, we find that X-ray hardness ratio and HI absorption optical depth are correlated at a statistical significance of 4.71{sigma}. We conclude by considering the impact of these findings on future radio and X-ray absorption studies.
286 - A. Tarchi , A. Greve , A. B. Peck 2003
We present 1.4 GHz HI absorption line observations towards the starburst in NGC2146, made with the VLA and MERLIN. The HI absorption has a regular spatial and regular velocity distribution, and does not reveal any anomaly as a sign of an encounter with another galaxy or of a far-evolved merger.
We have studied the small scale distribution of atomic hydrogen (HI) using 21-cm absorption spectra against multiple-component background radio continuum sources from the 21-SPONGE survey and the Millennium Arecibo Absorption Line Survey. We have found $>5sigma$ optical depth variations at a level of $sim0.03-0.5$ between 13 out of 14 adjacent sightlines separated by a few arcseconds to a few arcminutes, suggesting the presence of neutral structures on spatial scales from a few to thousands of AU (which we refer to as tiny scale atomic structure, TSAS). The optical depth variations are strongest in directions where the HI column density and the fraction of HI in the cold neutral medium (CNM) are highest, which tend to be at low Galactic latitudes. By measuring changes in the properties of Gaussian components fitted to the absorption spectra, we find that changes in both the peak optical depth and the linewidth of TSAS absorption features contribute to the observed optical depth variations, while changes in the central velocity do not appear to strongly impact the observed variations. Both thermal and turbulent motions contribute appreciably to the linewidths, but the turbulence does not appear strong enough to confine overpressured TSAS. In a majority of cases, the TSAS column densities are sufficiently high that these structures can radiatively cool fast enough to maintain thermal equilibrium with their surroundings, even if they are overpressured. We also find that a majority of TSAS is associated with the CNM. For TSAS in the direction of the Taurus molecular cloud and the local Leo cold cloud, we estimate densities over an order of magnitude higher than typical CNM densities.
We report the detection of very broad HI absorption against the central regions of the radio galaxy 3C293. The absorption profile, obtained with the Westerbork Synthesis Radio Telescope, has a full width at zero intensity of about 1400 km/s and most of this broad absorption (~1000 km/s) is blueshifted relative to the systemic velocity. This absorption represents a fast outflow of neutral gas from the central regions of this AGN. Possible causes for such an outflow are discussed. We favour the idea that the interaction between the radio jet and the rich ISM produces this outflow. Some of the implications of this scenario are considered.
139 - Kanan K. Datta 2009
The epoch of reionization is one of the least known chapters in the evolutionary history of the Universe. This thesis investigates two major approaches to unveil the reionization history of the Universe using HI 21-cm maps.The most discussed approach has been to study the global statistical properties of the reionization HI 21-cm. We develop the formalism to calculate the Multi-frequency Angular Power Spectrum (MAPS) and quantify the statistics of the HI signal as a joint function of the angular multipole l and frequency separation Delta u. We adopt a simple model for the HI distribution which incorporates patchy reionization and use it to study the signatures of ionized bubbles on MAPS. We also study the implications of the foreground subtraction. A major part of the thesis investigates the possibility of detecting ionized bubbles around individual sources in 21-cm maps. We present a visibility based matched filter technique to optimally combine the signal from an ionized bubble and minimize the noise and foreground contributions. The formalism makes definite predictions on the ability to detect an ionized bubble or conclusively rule out its presence within a radio map. Results are presented for the GMRT and the MWA. Using simulated HI maps we analyzed the impact of HI fluctuations outside the bubble on its detectability. Various other issues such as (i) bubble size determination (ii) blind search for bubbles, (iii) optimum redshift for bubble detection are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا