Do you want to publish a course? Click here

Fast outflow of neutral hydrogen in the radio galaxy 3C293

128   0   0.0 ( 0 )
 Added by Clive Tadhunter
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of very broad HI absorption against the central regions of the radio galaxy 3C293. The absorption profile, obtained with the Westerbork Synthesis Radio Telescope, has a full width at zero intensity of about 1400 km/s and most of this broad absorption (~1000 km/s) is blueshifted relative to the systemic velocity. This absorption represents a fast outflow of neutral gas from the central regions of this AGN. Possible causes for such an outflow are discussed. We favour the idea that the interaction between the radio jet and the rich ISM produces this outflow. Some of the implications of this scenario are considered.



rate research

Read More

The energetic feedback that is generated by radio jets in active galactic nuclei (AGNs) has been suggested to be able to produce fast outflows of atomic hydrogen (HI) gas that can be studied in absorption at high spatial resolution. We have used the Very Large Array (VLA) and a global very-long-baseline-interferometry (VLBI) array to locate and study in detail the HI outflow discovered with the Westerbork Synthesis Radio Telescope (WSRT) in the re-started radio galaxy 3C 236. We confirm, from the VLA data, the presence of a blue-shifted wing of the HI with a width of $sim1000mathrm{,km,s^{-1}}$. This HI outflow is partially recovered by the VLBI observation. In particular, we detect four clouds with masses of $0.28text{-}1.5times 10^4M_odot$ with VLBI that do not follow the regular rotation of most of the HI. Three of these clouds are located, in projection, against the nuclear region on scales of $lesssim 40mathrm{,pc}$, while the fourth is co-spatial to the south-east lobe at a projected distance of $sim270mathrm{,pc}$. Their velocities are between $150$ and $640mathrm{,km,s^{-1}}$ blue-shifted with respect to the velocity of the disk-related HI. These findings suggest that the outflow is at least partly formed by clouds, as predicted by some numerical simulations and originates already in the inner (few tens of pc) region of the radio galaxy. Our results indicate that all of the outflow could consist of many clouds with perhaps comparable properties as the ones detected, distributed also at larger radii from the nucleus where the lower brightness of the lobe does not allow us to detect them. However, we cannot rule out the presence of a diffuse component of the outflow. The fact that 3C 236 is a low excitation radio galaxy, makes it less likely that the optical AGN is able to produce strong radiative winds leaving the radio jet as the main driver for the HI outflow.
137 - Alan R. Duffy 2008
We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues related to the estimation of the source counts and optimizations of the survey, and discuss the constraints on cosmological models that such a survey could provide. We find that a survey taking around two years could detect ~10^7 galaxies with an average redshift of ~0.15 making the survey complementary to those already carried out at optical wavelengths. These conservative estimates have used the z=0 HI mass function and have ignored the possibility of evolution. The results could be used to constrain Gamma = (Omega_m h) to 5 per cent and the spectral index, n_s, to 7 per cent independent of cosmic microwave background data. If we also use simulated power spectra from the Planck satellite, we can constrain w to be within 5 per cent of -1.
Fast outflows of gas, driven by the interaction between the radio-jets and ISM of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C293. In this paper we present Integral Field Unit (IFU) observations taken with OASIS on the William Herschel Telescope (WHT), enabling us to map the spatial extent of the ionised gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C293 is detected along the inner radio lobes with a mass outflow rate ranging from $sim 0.05-0.17$ solar masses/yr (in ionised gas) and corresponding kinetic power of $sim 0.5-3.5times 10^{40}$ erg/s. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find line-widths broader than $300$ km/s up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet line-widths $>400$ km/s are detected out to 7 kpc from the nucleus and line-widths of $>500$ km/s at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.
109 - N. P. F. McKay 2002
We present preliminary results from a study of the neutral hydrogen (HI) properties of an X-ray selected sample of nearby loose galaxy groups. This forms part of a multi-wavelength investigation (X-ray, optical and radio) of the formation and evolution of galaxies within a group environment. Some initial findings of an ATNF Parkes Multibeam wide-area neutral hydrogen imaging survey of 17 nearby galaxy groups include two new, potentially isolated clouds of HI in the NGC 1052 and NGC 5044 groups and significant amounts of HI within the group virial radii of groups NGC 3557 and IC 1459 - two groups with complex X-ray structures that suggest they may still be in the act of virialisation. Here we present ATCA high-resolution synthesis-imaging follow-up observations of the distribution and kinematics of HI in these four groups.
One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا