We have performed systematic frequency analysis of the LMC Cepheids observed by OGLE project. Several new types of pulsation behaviour are identified, including triple-mode and amplitude-modulated double-mode pulsations. In ~10% of the first overtone Cepheids we find low amplitude secondary periodicities corresponding to nonradial modes. This is the first evidence for excitation of nonradial oscillations in Classical Cepheid variables.
We present a detailed comparison between predicted and empirical PL_{I,K} relations and Wesenheit function for Galactic and Magellanic Clouds (MCs) First Overtone (FO) Cepheids. We find that zero-points predicted by Galactic Cepheid models based on a noncanonical (mild overshooting) Mass-Luminosity (ML) relation are in very good agreement with empirical zero-points based on HIPPARCOS parallaxes, while those based on canonical (no overshooting) ML relation are about 0.2-0.3 mag brighter. We also find that predicted and empirical PL_K relation and Wesenheit function give, according to optical (V,I OGLE) and near-infrared (NIR, K, 2mass) data, mean distances to the MCs that agree at the 2% level. Individual distances to the Large and the Small Cloud are: 18.53+-0.08-19.04+-0.11 (theory) and 18.48+-0.13-19.01+-0.13 (empirical). Moreover, predicted and empirical FO relations do not present, within the errors, a metallicity dependence. Finaly, we find that the upper limit in the FO period distribution is a robust observable to constrain the accuracy of pulsation models. Current models agree within 0.1 in log P with the observed FO upper limits.
We have measured the elemental abundances of 68 Galactic and Magellanic Cepheids from FEROS and UVES high-resolution and high signal-to-noise spectra in order to establish the influence of the chemical composition on the properties of these stars (see Romaniello et al. 2005). Here we describe the robust analytical procedure we have developed to accurately determine them. The resulting iron abundances span a range between ~ -0.80 dex for stars in the Small Magellanic Cloud and ~ +0.20 dex for the most metal-rich ones in the Galaxy. While the average values for each galaxy are in good agreement with non-pulsating stars of similar age, Cepheids display a significant spread. Thus it is fundamental to measure the metallicity of individual stars.
A number of microlensing dark-matter surveys have produced tens of millions of light curves of individual background stars. These data provide an unprecedented opportunity for systematic studies of whole classes of variable stars and their host galaxies. We aim to use the EROS-2 survey of the Magellanic Clouds to detect and study the population of beat Cepheids (BCs) in both Clouds. BCs pulsating simultaneously in the first overtone and fundamental modes (FO/F) or in the second and first overtone modes (SO/FO) are of particular interest. Using special software designed to search for periodic variables, we have scanned the EROS-2 data base for variables in the typical period range of Cepheids. Metallicities of FO/F objects were then calculated from linear nonadiabatic convective stellar models. We identify 74 FO/F BCs in the LMC and 41 in the SMC, and 173 and 129 SO/FO pulsators in the LMC and SMC, respectively; 185 of these stars are new discoveries. For nearly all the FO/F objects we determine minimum, mean, and maximum values of the metallicity. The EROS data have expanded the samples of known BCs in the LMC by 31%, in the SMC by 110%. The FO/F objects provide independent measures of metallicities in these galaxies. The mean value of metallicity is 0.0045 in the LMC and 0.0018 in the SMC.
In the present study, we examine reddening distribution across the LMC and SMC through largest data on Classical Cepheids provided by the OGLE Phase IV survey. The V and I band photometric data of 2476 fundamental mode (FU) and 1775 first overtone mode (FO) Cepheids in the LMC and 2753 FU and 1793 FO Cepheids in the SMC are analyzed for their Period-Luminosity (P-L) relations. We convert period of FO Cepheids to corresponding period of FU Cepheids before combining the two modes of Cepheids. The reddening analysis is performed on 133 segments covering a total area of about 154.6 deg^2 in the LMC and 136 segments covering a total area of about 31.3 deg^2 in the SMC. By comparing with well calibrated P-L relations of these two galaxies, we determine reddening E(V-I) in each segment. Using reddening values in different segments across the LMC and SMC, reddening maps are constructed. We find clumpy structures in the reddening distributions of the LMC and SMC. From the reddening map of the LMC, highest reddening of E(V-I) = 0.466 mag is traced in the region centered at RA ~ 85.13 deg, DEC ~ -69.34 deg which is in close vicinity of the star forming HII region 30 Doradus. In the SMC, maximum reddening of E(V-I) = 0.189 mag is detected in the region centered at RA ~ 12.10 deg, DEC ~ -73.07 deg. The mean reddening values in the LMC are estimated as E(V-I) = 0.113+/-0.060 mag and E(B-V) = 0.091+/-0.050 mag; and that in the SMC are E(V-I) = 0.049+/-0.070 mag and E(B-V) = 0.038+/-0.053 mag. The period-age relations are used to derive the age of the Cepheid populations in the LMC and SMC. We investigate age and spatio-temporal distributions of Cepheids to understand the recent star formation history in the Magellanic Clouds (MCs) and found an evidence of a common enhanced Cepheid population in the MCs at around 200 Myr ago which appears to have occurred due to close encounter between the two clouds.