Do you want to publish a course? Click here

The Chemical Composition of Cepheids in the Milky Way and the Magellanic Clouds

99   0   0.0 ( 0 )
 Added by Marta Mottini
 Publication date 2005
  fields Physics
and research's language is English
 Authors M. Mottini




Ask ChatGPT about the research

We have measured the elemental abundances of 68 Galactic and Magellanic Cepheids from FEROS and UVES high-resolution and high signal-to-noise spectra in order to establish the influence of the chemical composition on the properties of these stars (see Romaniello et al. 2005). Here we describe the robust analytical procedure we have developed to accurately determine them. The resulting iron abundances span a range between ~ -0.80 dex for stars in the Small Magellanic Cloud and ~ +0.20 dex for the most metal-rich ones in the Galaxy. While the average values for each galaxy are in good agreement with non-pulsating stars of similar age, Cepheids display a significant spread. Thus it is fundamental to measure the metallicity of individual stars.



rate research

Read More

The Cepheid Period-Luminosity (PL) relation is the key tool for measuring astronomical distances and for establishing the extragalactic distance scale. In particular, the local value of the Hubble constant ($H_0$) strongly depends on Cepheid distance measurements. The recent Gaia Data Releases and other parallax measurements from the Hubble Space Telescope (HST) already enabled to improve the accuracy of the slope ($alpha$) and intercept ($beta$) of the PL relation. However, the dependence of this law on metallicity is still largely debated. In this paper, we combine three samples of Cepheids in the Milky Way (MW), the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) in order to derive the metallicity term (hereafter $gamma$) of the PL relation. The recent publication of extremely precise LMC and SMC distances based on late-type detached eclipsing binary systems (DEBs) provides a solid anchor for the Magellanic Clouds. In the MW, we adopt Cepheid parallaxes from the early third Gaia Data Release. We derive the metallicity effect in $V$, $I$, $J$, $H$, $K_S$, $W_{VI}$ and $W_{JK}$. In the $K_S$ band we report a metallicity effect of $-0.221 pm 0.051$ mag/dex, the negative sign meaning that more metal-rich Cepheids are intrinsically brighter than their more metal-poor counterparts of the same pulsation period.
Discovered over 30 years ago, the B[e] phenomenon has not yet revealed all its puzzles. New objects that exhibit it are being discovered in the Milky Way, and properties of known objects are being constrained. We review recent findings about objects of this class and their subgroups as well as discuss new results from studies of the objects with yet unknown nature. In the Magellanic Clouds, the population of such objects has been restricted to supergiants. We present new candidates with apparently lower luminosities found in the LMC.
We present a differential studies of 550 Cepheids observed in the LMC and the SMC by the EROS microlensing survey.
A robust classification of Cepheids into their different sub-classes and, in particular, between classical and Type II Cepheids, is necessary to properly calibrate the period-luminosity relations and for populations studies in the Galactic disc. Type II Cepheids are, however, very diverse, and classifications based either on intrinsic (period, light curve) or external parameters (e.g., [Fe/H], |z|) do not provide a unique classification. We want to ascertain the classification of two Cepheids, HQ Car and DD Vel, that are sometimes classified as classical Cepheids and sometimes as Type II Cepheids. To achieve this goal, we examine both their chemical composition and the presence of specific features in their spectra. We find emission features in the H{alpha} and in the 5875.64 {AA} He I lines that are typical of W Vir stars. The [Na/Fe] (or [Na/Zn]) abundances are typical of thick-disc stars, while BL Her stars are Na-overabundant ([Na/Fe]>+0.5 dex). Finally, the two Cepheids show a possible (HQ Car) or probable (DD Vel) signature of mild dust-gas separation that is usually observed only in long-period type II Cepheids and RV Tau stars. These findings clearly indicate that HQ Car and DD Vel are both Type II Cepheids from the W Vir sub-class. Several studies have reported an increase in the Cepheids abundance dispersion towards the outer (thin) disc. A detailed inspection of the Cepheid classification, in particular for those located in the outer disc, will indicate whether this feature is real or simply an artefact of the inclusion of type II Cepheids belonging to the thick disc in the current samples.
The extragalactic distance scale builds on the Cepheid period-luminosity (PL) relation. In this paper, we want to carry out a strictly differential comparison of the absolute PL relations obeyed by classical Cepheids in the Milky Way (MW), LMC and SMC galaxies. Taking advantage of the substantial metallicity difference among the Cepheid populations in these three galaxies, we want to establish a possible systematic trend of the PL relation absolute zero point as a function of metallicity, and determine the size of such an effect in optical and near-infrared photometric bands. We are using the IRSB Baade-Wesselink type method as calibrated by Storm et al. to determine individual distances to the Cepheids in our samples in MW, LMC and SMC. For our analysis, we use a greatly enhanced sample of Cepheids in the SMC (31 stars) as compared to the small sample (5 stars) available in our previous work. We use the distances to determine absolute Cepheid PL relations in optical and near-infrared bands in each of the three galaxies.} {Our distance analysis of 31 SMC Cepheids with periods from 4-69 days yields tight PL relations in all studied bands, with slopes consistent with the corresponding LMC and MW relations. Adopting the very accurately determined LMC slopes for the optical and near-infrared bands, we determine the zero point offsets between the corresponding absolute PL relations in the 3 galaxies. We find that in all bands the metal-poor SMC Cepheids are intrinsically fainter than their more metal-rich counterparts in the LMC and MW. In the $K$ band the metallicity effect is $-0.23pm0.06$~mag/dex while in the $V,(V-I)$ Wesenheit index it is slightly stronger, $-0.34pm0.06$~mag/dex. We find some evidence that the PL relation zero point-metallicity relation might be nonlinear, becoming steeper for lower metallicities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا