Do you want to publish a course? Click here

The beat Cepheids in the Magellanic Clouds: an analysis from the EROS-2 database

124   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A number of microlensing dark-matter surveys have produced tens of millions of light curves of individual background stars. These data provide an unprecedented opportunity for systematic studies of whole classes of variable stars and their host galaxies. We aim to use the EROS-2 survey of the Magellanic Clouds to detect and study the population of beat Cepheids (BCs) in both Clouds. BCs pulsating simultaneously in the first overtone and fundamental modes (FO/F) or in the second and first overtone modes (SO/FO) are of particular interest. Using special software designed to search for periodic variables, we have scanned the EROS-2 data base for variables in the typical period range of Cepheids. Metallicities of FO/F objects were then calculated from linear nonadiabatic convective stellar models. We identify 74 FO/F BCs in the LMC and 41 in the SMC, and 173 and 129 SO/FO pulsators in the LMC and SMC, respectively; 185 of these stars are new discoveries. For nearly all the FO/F objects we determine minimum, mean, and maximum values of the metallicity. The EROS data have expanded the samples of known BCs in the LMC by 31%, in the SMC by 110%. The FO/F objects provide independent measures of metallicities in these galaxies. The mean value of metallicity is 0.0045 in the LMC and 0.0018 in the SMC.



rate research

Read More

We report the discovery of eleven beat Cepheids in the Small Magellanic Cloud, using data obtained by the EROS microlensing survey. Four stars are beating in the fundamental and first overtone mode (F/1OT), seven are beating in the first and second overtone (1OT/2OT). The SMC F/1OT ratio is systematically higher than the LMC F/1OT, while the 1OT/2OT period ratio in the SMC Cepheids is the same as the LMC one.
We present a catalogue of 1768 eclipsing binary stars (EBs) detected in the Large Magellanic Cloud (LMC) by the second generation of the EROS survey (hereinafter EROS-2); 493 of them are new discoveries located in outer regions (out of the central bar) of the LMC. These sources were originally included in a list of candidate classical Cepheids (CCs) extracted from the EROS-2 catalogue on the basis of the period (0.89 $<P_{EROS}<$15.85 days) versus luminosity ($13.39 < langle B_{EROS}rangle<17.82$ mag) diagram. After visual inspection of the light curves we reclassified them as eclipsing binaries. They have blue colours ($B_{EROS} - R_{EROS} < $ 0.2 mag) hence we classed them as hot eclipsing binaries (HEBs) containing hot massive components: main sequence (MS) stars or blue giants. We present $K_{rm s}$-band light curves for 999 binaries from our sample that have a counterpart in the VISTA near-infrared ESO public survey of the Magellanic Clouds system (VMC). We provide spectral classifications of 13 HEBs with existing spectroscopy. We divided our sample into contact-like binaries and detached/semi-detached systems based on both visual inspection and the parameters of the Fourier decomposition of the light curves and analysed the period-luminosity ($PL$) relations of the contact-like systems using the $R_{EROS}$ and $K_{rm s}$ magnitudes at maximum light. The contact-like binaries in our sample do not follow $PL$ relations. We analysed the sample of contact binaries from the OGLE III catalogue and confirmed that $PL_I$ and $PL_{K_{rm s}}$ sequences are defined only by eclipsing binaries containing a red giant component.
R Coronae Borealis stars (RCB) are a rare type of evolved carbon-rich supergiant stars that are increasingly thought to result from the merger of two white dwarfs, called the Double degenerate scenario. This scenario is also studied as a source, at higher mass, of type Ia Supernovae (SnIa) explosions. Therefore a better understanding of RCBs composition would help to constrain simulations of such events. We searched for and studied RCB stars in the EROS Magellanic Clouds database. We also extended our research to DY Per type stars (DYPers) that are expected to be cooler RCBs (T~3500 K) and much more numerous than their hotter counterparts. The light curves of ~70 millions stars have been analysed to search for the main signature of RCBs and DYPers: a large drop in luminosity. Follow-up optical spectroscopy was used to confirm each photometric candidate found. We have discovered and confirmed 6 new Magellanic Cloud RCB stars and 7 new DYPers, but also listed new candidates: 3 RCBs and 14 DYPers. We estimated a range of Magellanic RCB shell temperatures between 360 and 600 K. We confirm the wide range of absolute luminosity known for RCB stars, M_V~-5.2 to -2.6. Our study further shows that mid-infrared surveys are ideal to search for RCB stars, since they have thinner and cooler circumstellar shells than classical post-AGB stars. In addition, by increasing the number of known DYPers by ~400%, we have been able to shed light on the similarities in the spectral energy distribution between DYPers and ordinary carbon stars. We also observed that DYPer circumstellar shells are fainter and hotter than those of RCBs. This suggests that DYPers may simply be ordinary carbon stars with ejection events, but more abundance analysis is necessary to give a status on a possible evolutionnary connexion between RCBs and DYPers.
The EROS-2 project was designed to test the hypothesis that massive compact halo objects (the so-called ``machos) could be a major component of the dark matter halo of the Milky Way galaxy. To this end, EROS-2 monitored over 6.7 years $33times10^6$ stars in the Magellanic clouds for microlensing events caused by such objects. In this work, we use only a subsample of $7times10^6$ bright stars spread over $84 deg^2$ of the LMC and $9 deg^2$ of the SMC. The strategy of using only bright stars helps to discriminate against background events due to variable stars and allows a simple determination of the effects of source confusion (blending). The use of a large solid angle makes the survey relatively insensitive to effects that could make the optical depth strongly direction dependent. Using this sample of bright stars, only one candidate event was found, whereas $sim39$ events would have been expected if the Halo were entirely populated by objects of mass $Msim0.4M_{odot}$. Combined with the results of EROS-1, this implies that the optical depth toward the Large Magellanic Cloud (object{LMC}) due to such lenses is $tau<0.36times10^{-7}$ (95%CL), corresponding to a fraction of the halo mass of less than 8%. This optical depth is considerably less than that measured by the MACHO collaboration in the central region of the LMC. More generally, machos in the mass range $0.6times10^{-7}M_odot<M<15M_{odot}$ are ruled out as the primary occupants of the Milky Way Halo.
The extragalactic distance scale builds on the Cepheid period-luminosity (PL) relation. In this paper, we want to carry out a strictly differential comparison of the absolute PL relations obeyed by classical Cepheids in the Milky Way (MW), LMC and SMC galaxies. Taking advantage of the substantial metallicity difference among the Cepheid populations in these three galaxies, we want to establish a possible systematic trend of the PL relation absolute zero point as a function of metallicity, and determine the size of such an effect in optical and near-infrared photometric bands. We are using the IRSB Baade-Wesselink type method as calibrated by Storm et al. to determine individual distances to the Cepheids in our samples in MW, LMC and SMC. For our analysis, we use a greatly enhanced sample of Cepheids in the SMC (31 stars) as compared to the small sample (5 stars) available in our previous work. We use the distances to determine absolute Cepheid PL relations in optical and near-infrared bands in each of the three galaxies.} {Our distance analysis of 31 SMC Cepheids with periods from 4-69 days yields tight PL relations in all studied bands, with slopes consistent with the corresponding LMC and MW relations. Adopting the very accurately determined LMC slopes for the optical and near-infrared bands, we determine the zero point offsets between the corresponding absolute PL relations in the 3 galaxies. We find that in all bands the metal-poor SMC Cepheids are intrinsically fainter than their more metal-rich counterparts in the LMC and MW. In the $K$ band the metallicity effect is $-0.23pm0.06$~mag/dex while in the $V,(V-I)$ Wesenheit index it is slightly stronger, $-0.34pm0.06$~mag/dex. We find some evidence that the PL relation zero point-metallicity relation might be nonlinear, becoming steeper for lower metallicities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا