No Arabic abstract
The strong CP problem was solved by Peccei & Quinn by introducing axions, a viable candidate for Dark Matter (DM). Here the PQ approach is modified so to yield also Dark Energy (DE). DM and DE arise, in fai proportions, from a single scalar field, without tuning any extra parameter. In the present epoch, they are weakly coupled. Fluctuations have a fair evolution. The model is also fitted to the WMAP1 release, using a Markov Chain Monte Carlo technique, and performs as well as $Lambda$CDM, coupled or uncoupled DE. Best--fit cosmological parameters for different models are mostly within 2--$sigma$ level. Here, the main peculiarity of the model is to favor high values of the Hubble parameter.
An unexpected explanation for neutrino mass, Dark Matter (DM) and Dark Energy (DE) from genuine Quantum Chromodynamics (QCD) of the Standard Model (SM) is proposed here, while the strong CP problem is resolved without any need to account for fundamental axions. We suggest that the neutrino sector can be in a double phase in the Universe: i) relativistic neutrinos, belonging to the SM; ii) non-relativistic condensate of Majorana neutrinos. The condensate of neutrinos can provide an attractive alternative candidate for the DM, being in a cold coherent state. We will explain how neutrinos, combining into Cooper pairs, can form collective low-energy degrees of freedom, hence providing a strongly motivated candidate for the QCD (composite) axion.
The axion mass receives a large correction from small instantons if the QCD gets strongly coupled at high energies. We discuss the size of the new CP violating phases caused by the fact that the small instantons are sensitive to the UV physics. We also discuss the effects of the mass correction on the axion abundance of the Universe. Taking the small-instanton contributions into account, we propose a natural scenario of axion dark matter where the axion decay constant is as large as $10^{15text{-}16}$GeV. The scenario works in the high-scale inflation models.
We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin-waves in the medium of the dark matter of the Galactic halo. The dark matter is a vector particle whose low energy interactions with the Standard Model take the form of its spin density coupled to $G widetilde{G}$, which induces a potential on the average spin density inducing it to compensate $overline{theta}$, effectively removing CP violation in the strong sector in regions of the Universe with sufficient dark matter density. We discuss the viable parameter space, finding that light dark matter masses within a few orders of magnitude of the fuzzy limit are preferred, and discuss the associated signals with this type of solution to the strong CP problem.
In this paper we study a model of interacting dark energy - dark matter where the ratio between these components is not constant, changing from early to late times in such a way that the model can solve or alleviate the cosmic coincidence problem (CP). The interaction arises from an assumed relation of the form $rho_xproptorho_d^alpha$, where $rho_x$ and $rho_d$ are the energy densities of dark energy and dark matter components, respectively, and $alpha$ is a free parameter. For a dark energy equation of state parameter $w=-1$ we found that, if $alpha=0$, the standard $Lambda$CDM model is recovered, where the coincidence problem is unsolved. For $0<alpha<1$, the CP would be alleviated and for $alphasim 1$, the CP would be solved. The dark energy component is analyzed with both $w=-1$ and $w eq -1$. Using Supernovae type Ia and Hubble parameter data constraints, in the case $w=-1$ we find $alpha=0.109^{+0.062}_{-0.072}$ at 68% C.L., and the CP is alleviated. This model is also slightly favoured against nonflat $Lambda$CDM model by using a Bayesian Information Criterion (BIC) analysis. For $w eq-1$, a degeneracy arises on the $w$ - $alpha$ plane. In order to break such degeneracy we add cosmic microwave background distance priors and baryonic acoustic oscillations data to the constraints, yielding $alpha=-0.075pm 0.046$ at 68% C.L.. In this case we find that the CP is not alleviated even for 2$sigma$ interval for $alpha$. Furthermore, this last model is discarded against nonflat $Lambda$CDM according to BIC analysis.
We present a new solution to the strong CP problem in which the imaginary component of the up quark mass, $mathcal{I}[m_u]$, acquires a tiny, but non-vanishing value. This is achieved via a Dirac seesaw mechanism, which is also responsible for the generation of the small neutrino masses. Consistency with the observed value of the up quark mass is achieved via instanton contributions arising from QCD-like interactions. In this framework, the value of the neutron electric dipole moment is directly related to $mathcal{I}[m_u]$, which, due to its common origin with the neutrino masses, implies that the neutron electric dipole moment is likely to be measured in the next round of experiments. We also present a supersymmetric extension of this Dirac seesaw model to stabilize the hierarchy among the scalar mass scales involved in this new mechanism.