Do you want to publish a course? Click here

An Emergent Solution to the Strong CP Problem

130   0   0.0 ( 0 )
 Added by Jason Arakawa
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We construct a theory in which the solution to the strong CP problem is an emergent property of the background of the dark matter in the Universe. The role of the axion degree of freedom is played by multi-body collective excitations similar to spin-waves in the medium of the dark matter of the Galactic halo. The dark matter is a vector particle whose low energy interactions with the Standard Model take the form of its spin density coupled to $G widetilde{G}$, which induces a potential on the average spin density inducing it to compensate $overline{theta}$, effectively removing CP violation in the strong sector in regions of the Universe with sufficient dark matter density. We discuss the viable parameter space, finding that light dark matter masses within a few orders of magnitude of the fuzzy limit are preferred, and discuss the associated signals with this type of solution to the strong CP problem.



rate research

Read More

53 - Marcela Carena , Da Liu , Jia Liu 2019
We present a new solution to the strong CP problem in which the imaginary component of the up quark mass, $mathcal{I}[m_u]$, acquires a tiny, but non-vanishing value. This is achieved via a Dirac seesaw mechanism, which is also responsible for the generation of the small neutrino masses. Consistency with the observed value of the up quark mass is achieved via instanton contributions arising from QCD-like interactions. In this framework, the value of the neutron electric dipole moment is directly related to $mathcal{I}[m_u]$, which, due to its common origin with the neutrino masses, implies that the neutron electric dipole moment is likely to be measured in the next round of experiments. We also present a supersymmetric extension of this Dirac seesaw model to stabilize the hierarchy among the scalar mass scales involved in this new mechanism.
130 - F.L. Bezrukov , Y. Burnier 2009
We show that the strong CP problem can, in principle, be solved dynamically by adding extra-dimensions with compact topology. To this aim we consider a toy model for QCD, which contains a vacuum angle and a strong CP like problem. We further consider a higher dimensional theory, which has a trivial vacuum structure and which reproduces the perturbative properties of the toy model in the low-energy limit. In the weak coupling regime, where our computations are valid, we show that the vacuum structure of the low-energy action is still trivial and the strong CP problem is solved. No axion-like particle occur in this setup and therefore it is not ruled out by astrophysical bounds.
One class of solutions to the strong CP problem relies on generalized parity symmetries. A minimal model of this type, constructed by Babu and Mohapatra and based on a softly broken parity symmetry, has the remarkable property that effective QCD vacuum angle $bartheta$ vanishes up to one-loop order. We compute the leading two-loop contributions to $bartheta$ in this model and estimate subleading contributions. In contrast to previous estimates, we argue that $bar theta$ is not suppressed by the weak scale, and we find contributions of order $10^{-3}$-$10^{-2}$ multiplying unknown mixing angles and phases. Thus the model does not generically address the strong CP problem, but it might be made consistent with $bartheta<10^{-10}$ in some corners of parameter space. For such non-generic parameters, $bartheta$ is still likely to be just below present bounds, and therefore provides the dominant source of hadronic EDMs. We discuss the resulting EDM phenomenology.
We show that QCD instantons can generate large effects at small length scales in the ultraviolet in standard composite Higgs models that utilise partial compositeness. This has important implications for possible solutions of the strong CP problem in these models. First we show that in the simplest known UV completions of composite Higgs models, if an axion is also present, it can have a mass much larger than the usual QCD axion. Even more remarkable is the case where there are no axions, but the strong CP problem can be solved by generating the up quark mass entirely from the contribution of instantons thus reviving the massless up-quark solution for these models. In both cases no additional field content is required apart from what is required to realise partial compositeness.
Many meson processes are related to the U_A(1) axial anomaly, present in the Feynman graphs where fermion loops connect axial vertices with vector vertices. However, the coupling of pseudoscalar mesons to quarks does not have to be formulated via axial vertices. The pseudoscalar coupling is also possible, and this approach is especially natural on the level of the quark substructure of hadrons. In this paper we point out the advantages of calculating these processes using (instead of the anomalous graphs) the graphs where axial vertices are replaced by pseudoscalar vertices. We elaborate especially the case of the processes related to the Abelian axial anomaly of QED, but we speculate that it seems possible that effects of the non-Abelian axial anomaly of QCD can be accounted for in an analogous way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا