Do you want to publish a course? Click here

Determinations of temperature and density for solar-like Stars using Si XI soft X-ray emission lines

69   0   0.0 ( 0 )
 Added by Guiyun Liang
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study temperature and density sensitivities of ratios of Si XI soft X-ray emission lines, in the wavelength range of 43--54AA . The typical temperature of the formation of the analyzed lines is around 1.6~MK, which makes this analysis complementary to the analysis of He-like triplets being sensitive to hotter plasma. We present theoretical calculations and compare them with ratios obtained from high-resolution X-ray spectra of five solar-like stars: Procyon, $alpha$ Cen A$&$B, $epsilon$ Eri, and Capella. We find that our results are in good agreement with results obtained by other authors through different diagnostics, namely the analysis of density- and temperature-sensitive He-like triplet lines. We further estimate the coronal pressure and filling factors from Si~XI lines in this study.



rate research

Read More

New fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32 - 49 A portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and observations of Capella from the Low Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50 - 77 A wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
Recent calculations of atomic data for Fe XV have been used to generate theoretical line ratios involving n = 3-4 transitions in the soft X-ray spectral region (52-83 A), for a wide range of electron temperatures and densities applicable to solar and stellar coronal plasmas. A comparison of these with solar flare observations from a rocket-borne spectrograph (XSST) reveals generally good agreement between theory and experiment. In particular, the 82.76 A emission line in the XSST spectrum is identified, for the first time to our knowledge in an astrophysical source. Most of the Fe XV transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. The line ratio calculations are also compared with a co-added spectrum of Capella obtained with the Chandra satellite, which is probably the highest signal-to-noise observation achieved for a stellar source in the 25-175 A soft X-ray region. Good agreement is found between theory and experiment, indicating that the Fe XV lines are reliably detected in Chandra spectra, and hence may be employed as diagnostics to determine the temperature and/or density of the emitting plasma. However the line blending in the Chandra data is such that individual emission lines are difficult to measure accurately, and fluxes may only be reliably determined via detailed profile fitting of the observations. The co-added Capella spectrum is made available to hopefully encourage further exploration of the soft X-ray region in astronomical sources.
High-resolution X-ray spectroscopy has advanced our understanding of the hot Universe by revealing physical properties like kinematics, temperature, and abundances of the astrophysical plasmas. Despite the technical and scientific achievements, the lack of scientific products at a level higher than count spectra is hampering full scientific exploitation of high-quality data. This paper introduces the Catalogue of Ionized Emission Lines Observed by the Reflection Grating Spectrometer (CIELO-RGS) onboard the XMM-Newton space observatory. The CIELO-RGS catalogue aims to facilitate the exploitation of emission features in the public RGS spectra archive, in particular, to perform the correlation between X-ray spectral diagnostics parameters with measurements at other wavelengths. This paper focuses on the methodology of catalogue generation, describing the automated line detection algorithm. A moderate sample (~2400 observations) of high-quality RGS spectra available at XMM-Newton Science Archive is used as our starting point. A list of potential emission lines is selected based on a multi-scale peak detection algorithm in a uniform and automated way without prior assumption on the underlying astrophysical model. The candidate line list is validated via spectral fitting with simple continuum and line profile models. We also compare the catalogue content with published literature results on a small number of exemplary sources. We generate a catalogue of emission lines ~12000 detected in ~1600 observations toward stars, X-ray binaries, supernovae remnants, active galactic nuclei, and groups and clusters of galaxies. For each line, we report the observed wavelength, broadening, energy and photon flux, and equivalent width, etc.
113 - D. Watson 2003
Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increases from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.
Recent atomic physics calculations for Si II are employed within the Cloudy modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, Beta-Geminorum, Alpha-Centauri A and B, as well as previously published HST/GHRS observations of Alpha-Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{4}$P$_{J^{prime}}$ intercombination multiplet of Si II at 2335 Angs are significantly reduced, as are those for ratios containing the 3s$^{2}$3p $^{2}$P$_{J}$--3s3p$^{2}$ $^{2}$D$_{J^{prime}}$ transitions at 1816 Angs. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et. al. (1993) for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا