Do you want to publish a course? Click here

Soft X-ray emission lines of Fe XV in solar flare observations and the Chandra spectrum of Capella

166   0   0.0 ( 0 )
 Added by Francis Keenan
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent calculations of atomic data for Fe XV have been used to generate theoretical line ratios involving n = 3-4 transitions in the soft X-ray spectral region (52-83 A), for a wide range of electron temperatures and densities applicable to solar and stellar coronal plasmas. A comparison of these with solar flare observations from a rocket-borne spectrograph (XSST) reveals generally good agreement between theory and experiment. In particular, the 82.76 A emission line in the XSST spectrum is identified, for the first time to our knowledge in an astrophysical source. Most of the Fe XV transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. The line ratio calculations are also compared with a co-added spectrum of Capella obtained with the Chandra satellite, which is probably the highest signal-to-noise observation achieved for a stellar source in the 25-175 A soft X-ray region. Good agreement is found between theory and experiment, indicating that the Fe XV lines are reliably detected in Chandra spectra, and hence may be employed as diagnostics to determine the temperature and/or density of the emitting plasma. However the line blending in the Chandra data is such that individual emission lines are difficult to measure accurately, and fluxes may only be reliably determined via detailed profile fitting of the observations. The co-added Capella spectrum is made available to hopefully encourage further exploration of the soft X-ray region in astronomical sources.

rate research

Read More

New fully relativistic calculations of radiative rates and electron impact excitation cross sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32 - 49 A portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and observations of Capella from the Low Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50 - 77 A wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.
Observations of Fe XVIII and Fe XIX X-ray, EUV, and FUV line emission, formed at the peak of Capellas (alpha Aurigae) emission measure distribution and ubiquitous in spectra of many cool stars and galaxies, provide a unique opportunity to test the robustness of Fe XVIII and Fe XIX spectral models. The Astrophysical Plasma Emission Code (APEC) is used to identify over 35 lines from these two ions alone, and to compare model predictions with spectra obtained with the Chandra Low Energy Transmission Grating and High Energy Transmission Grating Spectrometers, the Far Ultraviolet Spectroscopic Explorer, and the Extreme Ultraviolet Explorer. Some flux discrepancies larger than factors of two are found between observations of Fe XVIII and Fe XIX lines and predictions by APEC and other models in common usage. In particular the X-ray resonance lines for both ions are stronger than predicted by all models relative to the EUV resonance lines. The multiwavelength observations demonstrate the importance of including dielectronic recombination and proton impact excitation, and of using accurate wavelengths in spectral codes. These ions provide important diagnostic tools for 10^7 K plasmas currently observed with Chandra, XMM-Newton, and FUSE.
113 - D. Watson 2003
Strong, delayed X-ray line emission is detected in the afterglow of GRB 030227, appearing near the end of the XMM-Newton observation, nearly twenty hours after the burst. The observed flux in the lines, not simply the equivalent width, sharply increases from an undetectable level (<1.7e-14 erg/cm^2/s, 3 sigma) to 4.1e-14 erg/cm^2/s in the final 9.7 ks. The line emission alone has nearly twice as many detected photons as any previous detection of X-ray lines. The lines correspond well to hydrogen and/or helium-like emission from Mg, Si, S, Ar and Ca at a redshift z=1.39. There is no evidence for Fe, Co or Ni--the ultimate iron abundance must be less than a tenth that of the lighter metals. If the supernova and GRB events are nearly simultaneous there must be continuing, sporadic power output after the GRB of a luminosity >~5e46 erg/s, exceeding all but the most powerful quasars.
The Hitomi results for the Perseus cluster have shown that accurate atomic models are essential to the success of X-ray spectroscopic missions, and just as important as knowledge on instrumental calibration and astrophysical modeling. Preparing the models requires a multifaceted approach, including theoretical calculations, laboratory measurements, and calibration using real observations. In a previous paper, we presented a calculation of the electron impact cross sections on the transitions forming the Fe-L complex. In the present work, we systematically test the calculation against cross sections of ions measured in an electron beam ion trap experiment. A two-dimensional analysis in the electron beam energies and X-ray photon energies is utilized to disentangle radiative channels following dielectronic recombination, direct electron-impact excitation, and resonant excitation processes in the experimental data. The data calibrated through laboratory measurements are further fed into global modeling of the Chandra grating spectrum of Capella. We investigate and compare the fit quality, as well as sensitivity of the derived physical parameters to the underlying atomic data and the astrophysical plasma modeling. We further list the potential areas of disagreement between the observation and the present calculations, which in turn calls for renewed efforts in theoretical calculations and targeted laboratory measurements.
Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1-8 AA wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rising, decay times, duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and $geq$M1.0-class flares. It is found that the fraction of the SDE $geq$M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but they reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude quasi-biennial oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE $geq$M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense $geq$M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا