Do you want to publish a course? Click here

CIELO-RGS: a catalogue of soft X-ray ionized emission lines

149   0   0.0 ( 0 )
 Added by Junjie Mao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-resolution X-ray spectroscopy has advanced our understanding of the hot Universe by revealing physical properties like kinematics, temperature, and abundances of the astrophysical plasmas. Despite the technical and scientific achievements, the lack of scientific products at a level higher than count spectra is hampering full scientific exploitation of high-quality data. This paper introduces the Catalogue of Ionized Emission Lines Observed by the Reflection Grating Spectrometer (CIELO-RGS) onboard the XMM-Newton space observatory. The CIELO-RGS catalogue aims to facilitate the exploitation of emission features in the public RGS spectra archive, in particular, to perform the correlation between X-ray spectral diagnostics parameters with measurements at other wavelengths. This paper focuses on the methodology of catalogue generation, describing the automated line detection algorithm. A moderate sample (~2400 observations) of high-quality RGS spectra available at XMM-Newton Science Archive is used as our starting point. A list of potential emission lines is selected based on a multi-scale peak detection algorithm in a uniform and automated way without prior assumption on the underlying astrophysical model. The candidate line list is validated via spectral fitting with simple continuum and line profile models. We also compare the catalogue content with published literature results on a small number of exemplary sources. We generate a catalogue of emission lines ~12000 detected in ~1600 observations toward stars, X-ray binaries, supernovae remnants, active galactic nuclei, and groups and clusters of galaxies. For each line, we report the observed wavelength, broadening, energy and photon flux, and equivalent width, etc.

rate research

Read More

We find soft X-ray emission lines from the X-ray binary Swift J1858.6-0814 in data from XMM-Newton-RGS: N VII, O VII and O VIII, as well as notable residuals short of a detection at Ne IX and other higher ionisation transitions. These could be associated with the disc atmosphere, as in accretion disc corona sources, or with a wind, as has been detected in Swift J1858.6-0814 in emission lines at optical wavelengths. Indeed, the N VII line is redshifted, consistent with being the emitting component of a P-Cygni profile. We find that the emitting plasma has an ionisation parameter $log(xi)=1.35pm0.2$ and a density $n>1.5times10^{11}$ cm$^{-3}$. From this, we infer that the emitting plasma must be within $10^{13}$ cm of the ionising source, $sim5times10^{7}r_{rm g}$ for a $1.4M_{odot}$ neutron star, and from the line width that it is at least $10^4r_{rm g}$ away ($2times10^{9}(M/1.4M_{odot})$ cm). We compare this with known classes of emission line regions in other X-ray binaries and active galactic nuclei.
We address the problem where the X-ray emission lines are formed and investigate orbital dynamics using Chandra HETG observations, photoionizing calculations and numerical wind-particle simulations.The observed Si XIV (6.185 A) and S XVI (4.733 A) line profiles at four orbital phases were fitted with P Cygni-type profiles consisting of an emission and a blue-shifted absorption component. In the models, the emission originates in the photoionized wind of the WR companion illuminated by a hybrid source: the X-ray radiation of the compact star and the photospheric EUV-radiation from the WR star. The emission component exhibits maximum blue-shift at phase 0.5 (when the compact star is in front), while the velocity of the absorption component is constant (around -900 km/s). The simulated FeXXVI Ly alpha line (1.78 A) from the wind is weak compared to the observed one. We suggest that it originates in the vicinity of the compact star, with a maximum blue shift at phase 0.25 (compact star approaching). By combining the mass function derived with that from the infrared HeI absorption (arising from the WR companion), we constrain the masses and inclination of the system. Both a neutron star at large inclination (over 60 degrees) and a black hole at small inclination are possible solutions.
We have observed the prompt emission of GRB100418A, from its beginning by the MAXI/SSC (0.7-7 keV) on board the International Space Station followed by the Swift/XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power law component and an exponential component (decay constant is $31.6pm 1.6$ sec). The X-ray spectrum is well expressed by the Band function with $E_{rm p}leq$8.3 keV. This is the brightest GRB showing a very low value of $E_{rm p}$. It satisfies the Yonetoku-relation ($E_{rm p}$-$L_{rm p}$). It is also consistent with the Amati relation ($E_{rm p}$-$E_{rm iso}$) in 2.5$sigma$ level.
We report on robust measurements of elemental abundances of the Type IIn supernova SN 1978K, based on the high-resolution X-ray spectrum obtained with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton. The RGS clearly resolves a number of emission lines, including N Ly$alpha$, O Ly$alpha$, O Ly$beta$, Fe XVII, Fe XVIII, Ne He$alpha$ and Ne Ly$alpha$ for the first time from SN 1978K. The X-ray spectrum can be represented by an absorbed, two-temperature thermal emission model, with temperatures of $kT sim 0.6$ keV and $2.7$ keV. The elemental abundances are obtained to be N $=$ $2.36_{-0.80}^{+0.88}$, O $=$ $0.20 pm{0.05}$, Ne $=$ $0.47 pm{0.12}$, Fe $=$ $0.15_{-0.02}^{+0.01}$ times the solar values. The low metal abundances except for N show that the X-ray emitting plasma originates from the circumstellar medium blown by the progenitor star. The abundances of N and O are far from CNO-equilibrium abundances expected for the surface composition of a luminous blue variable, and resemble the H-rich envelope of less-massive stars with masses of 10-25 M$_odot$. Together with other peculiar properties of SN 1978K, i.e., a low expansion velocity of 500-1000 km s$^{-1}$ and SN IIn-like optical spectra, we propose that SN 1978K is a result of either an electron-capture SN from a super asymptotic giant branch star, or a weak Fe core-collapse explosion of a relatively low-mass ($sim$10 M$_odot$) or high-mass ($sim$20-25 M$_odot$) red supergiant star. However, these scenarios can not naturally explain the high mass-loss rate of the order of $dot{M} sim 10^{-3} rm{M_{odot} yr^{-1}}$ over $gtrsim$1000 yr before the explosion, which is inferred by this work as well as many other earlier studies. Further theoretical studies are required to explain the high mass-loss rates at the final evolutionary stages of massive stars.
Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the stars evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا