Do you want to publish a course? Click here

Imprints of deviations from the gravitational inverse-square law on the power spectrum of mass fluctuations

102   0   0.0 ( 0 )
 Added by Mauro Sereno
 Publication date 2006
  fields Physics
and research's language is English
 Authors M. Sereno




Ask ChatGPT about the research

Deviations from the gravitational inverse-square law would imprint scale-dependent features on the power spectrum of mass density fluctuations. We model such deviations as a Yukawa-like contribution to the gravitational potential and discuss the growth function in a mixed dark matter model with adiabatic initial conditions. Evolution of perturbations is considered in general non-flat cosmological models with a cosmological constant, and an analytical approximation for the growth function is provided. The coupling between baryons and cold dark matter across recombination is negligibly affected by modified gravity physics if the proper cutoff length of the long-range Yukawa-like force is > 10 h^{-1} Mpc. Enhancement of gravity affects the subsequent evolution, boosting large-scale power in a way that resembles the effect of a lower matter density. This phenomenon is almost perfectly degenerate in power-spectrum shape with the effect of a background of massive neutrinos. Back-reaction on density growth from a modified cosmic expansion rate should however also affect the normalization of the power spectrum, with a shape distortion similar to the case of a non-modified background.



rate research

Read More

169 - E. G. Adelberger 2002
Sub-mm tests of the gravitational inverse-square law are interesting from several quite different perspectives. This paper discusses work by the Eot-Wash group performed since the publication of our initial result in February 2001. We find no evidence for short-range Yukawa interactions. Our results provide an upper limit of 200 micrometers on the size of the largest ``extra dimension, and for the unification scenario with 2 large extra dimensions, set an upper limit of 150 micrometers on the size of those dimensions.
Motivated by a variety of theories that predict new effects, we tested the gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using two different 10-fold azimuthally symmetric torsion pendulums and rotating 10-fold symmetric attractors. Our work improves upon other experiments by up to a factor of about 100. We found no deviation from Newtonian physics at the 95% confidence level and interpret these results as constraints on extensions of the Standard Model that predict Yukawa or power-law forces. We set a constraint on the largest single extra dimension (assuming toroidal compactification and that one extra dimension is significantly larger than all the others) of R <= 160 microns, and on two equal-sized large extra dimensions of R <= 130 microns. Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of large extra dimensions. We also provide new constraints on power-law potentials V(r)propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of pseudoscalars with m <= 10 meV/c^2.
We use data from our recent search for violations of the gravitational inverse-square law to constrain dilaton, radion and chameleon exchange forces as well as arbitrary vector or scalar interactions. We test the interpretation of the PVLAS effect and a conjectured ``fat graviton scenario and constrain the $gamma_5$ couplings of pseuodscalar bosons and arbitrary power-law interactions.
We describe an experimental search for deviations from the inverse square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beamline. By measuring the neutron momentum transfer ($q$) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length $lambda$ which improves upon previous results in the region $lambda < 0.1,$nm, and remains competitive in the larger $lambda$ region. A pseudoexperimental simulation developed for this experiment and its role in the data analysis described. We conclude with plans for improving sensitivity in the larger $lambda$ region.
Many non-minimal dark matter scenarios lead to oscillatory features in the matter power spectrum induced by interactions either within the dark sector or with particles from the standard model. Observing such dark acoustic oscillations would therefore be a major step towards understanding dark matter. We investigate what happens to oscillatory features during the process of nonlinear structure formation. We show that at the level of the power spectrum, oscillations are smoothed out by nonlinear mode coupling, gradually disappearing towards lower redshifts. In the halo mass function, however, the same oscillations remain visible until the present epoch. As a consequence, dark acoustic oscillations could be detectable in observations that are either based on the halo mass function or on the high-redshift power spectrum. We investigate the effect of such oscillations on different observables, namely, the cluster mass function, the stellar-to-halo mass relation, and the Lyman-$alpha$ flux power spectrum. We find that dark acoustic oscillations remain visible in all of these observables, but they are very extended and of low amplitude, making it challenging to detect them as distinct features in the data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا