No Arabic abstract
We describe an experimental search for deviations from the inverse square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beamline. By measuring the neutron momentum transfer ($q$) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length $lambda$ which improves upon previous results in the region $lambda < 0.1,$nm, and remains competitive in the larger $lambda$ region. A pseudoexperimental simulation developed for this experiment and its role in the data analysis described. We conclude with plans for improving sensitivity in the larger $lambda$ region.
We present a search for possible spin dependent interactions of the neutron with matter through exchange of spin 1 bosons with axial vector couplings as envisioned in possible extensions of the Standard Model. This was sought using a slow neutron polarimeter that passed transversely polarized slow neutrons by unpolarized slabs of material arranged so that this interaction would tilt the plane of polarization and develop a component along the neutron momentum. The result for the rotation angle, $phi_{V_5} = [2.8pm,4.6(stat.)pm,4.0(sys.)]times 10^{-5}~mbox{rad/m}$ is consistent with zero. This result improves the upper bounds on the neutron-matter coupling $g_{A}^{2}$ from such an interaction by about three orders of magnitude for force ranges in the mm-$mu$m regime.
Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of $beta$-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the $beta$-neutron measurement, we also provide a first look at isolating single-$beta$ producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over $207$ live days indicates a $^{9}$Li production yield upper limit of $1.9times10^{-7}mu^{-1}g^{-1}mathrm{cm}^2$ at $sim400$ meters water equivalent (m.w.e.) overburden at the $90%$ confidence level. In this work the $^{9}$Li signal in WATCHBOY was used as a proxy for the combined search for $^{9}$Li and $^{8}$He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.
The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure of 86.3 kg$cdot$yr, characterized by an effective energy resolution of (7.7 $pm$ 0.5) keV FWHM and a background in the region of interest of (0.014 $pm$ 0.002) counts/(keV$cdot$kg$cdot$yr), we find no evidence for neutrinoless double-beta decay. The median statistical sensitivity of this search is $7.0times10^{24}$ yr. Including systematic uncertainties, we place a lower limit on the decay half-life of $T^{0 u}_{1/2}$($^{130}$Te) > $1.3times 10^{25}$ yr (90% C.L.). Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find $T^{0 u}_{1/2}$($^{130}$Te) > $1.5times 10^{25}$ yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find $m_{betabeta}<(110 - 520)$ meV, where the range reflects the nuclear matrix element estimates employed.
Tests on $B-L$ symmetry breaking models are important probes to search for new physics. One proposed model with $Delta(B-L)=2$ involves the oscillations of a neutron to an antineutron. In this paper a new limit on this process is derived for the data acquired from all three operational phases of the Sudbury Neutrino Observatory experiment. The search was concentrated in oscillations occurring within the deuteron, and 23 events are observed against a background expectation of 30.5 events. These translate to a lower limit on the nuclear lifetime of $1.48times 10^{31}$ years at 90% confidence level (CL) when no restriction is placed on the signal likelihood space (unbounded). Alternatively, a lower limit on the nuclear lifetime was found to be $1.18times 10^{31}$ years at 90% CL when the signal was forced into a positive likelihood space (bounded). Values for the free oscillation time derived from various models are also provided in this article. This is the first search for neutron-antineutron oscillation with the deuteron as a target.
The MAJORANA DEMONSTRATOR is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76-Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the MAJORANA research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.