Do you want to publish a course? Click here

Cygnus A: A Long Wavelength Resolution of the Hot Spots

64   0   0.0 ( 0 )
 Added by Joseph Lazio
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents observations of Cygnus A at 74 and 327 MHz at angular resolutions of approximately 10 and 3, respectively. These observations are among the highest angular resolutions obtained below 1000 MHz for this object. While the angular resolution at 74 MHz is not sufficient to separate clearly the hot spots from the lobes, guided by 151 and 327 MHz images, we have estimated the 74 MHz emission from the hot spots. We confirm that the emission from both the western and eastern hot spots flattens at low frequencies and that there is a spectral asymmetry between the two. For the eastern hot spot, a low-energy cutoff in the electron energy spectrum appears to explain the flattening, which implies a cutoff Lorentz factor gamma_min ~ 300, though we cannot exclude the possibility that there might be a moderate level of free-free absorption. For the western hot spot, the current observations are not sufficient to distinguish between a free-free absorped power-law spectrum and a synchrotron self-absorbed spectrum.



rate research

Read More

The composition of the relativistic plasma produced in active galactic nuclei and ejected via powerful jets into the interstellar/intergalactic medium is still a major unsettled issue. It might be a positron-electron plasma in case the plasma was created by pair production in the intense photon fields near accreting super-massive black holes. Alternatively, it might be an electron-proton plasma in case magnetic fields lift and accelerate the thermal gas of accretion discs into relativistic jets as the recent detection of $gamma$-rays from blazars indicates. Despite various attempts to unambiguously establish the composition of the relativistic jets, this remains a major unknown. Here, we propose a way to settle the question via sensitive measurements of circular polarization (CP) in the radio emission of the hot spots of bright radio galaxies like Cygnus A. The CP of synchrotron emission is determined by the circular motions of the radiating relativistic leptons. In case of charge symmetric energy spectra of a electron-positron plasma, it should be exactly zero. In case of an electron-proton plasma the electrons imprint their gyration onto the CP and we expect the hot spots of Cygnus A to exhibit a fractional CP at a level of $10^{-3},( u/mbox{GHz})^{-{1}/{2}}$, which is challenging to measure, but not completely unfeasible.
Images made with the VLBA have resolved the region in a nearby radio galaxy, Pictor A, where the relativistic jet that originates at the nucleus terminates in an interaction with the intergalactic medium, a so-called radio galaxy hot spot. This image provides the highest spatial resolution view of such an object to date (16 pc), more than three times better than previous VLBI observations of similar objects. The north-west Pictor A hot spot is resolved into a complex set of compact components, seen to coincide with the bright part of the hot spot imaged at arcsecond-scale resolution with the VLA. In addition to a comparison with VLA data, we compare our VLBA results with data from the HST and Chandra telescopes, as well as new Spitzer data. The presence of pc-scale components in the hot spot, identifying regions containing strong shocks in the fluid flow, leads us to explore the suggestion that they represent sites of synchrotron X-ray production, contributing to the integrated X-ray flux of the hot spot, along with X-rays from synchrotron self-Compton scattering. This scenario provides a natural explanation for the radio morphology of the hot spot and its integrated X-ray emission, leading to very different predictions for the higher energy X-ray spectrum compared to previous studies. From the sizes of the individual pc-scale components and their angular spread, we estimate that the jet width at the hot spot is in the range 70 - 700 pc, which is comparable to similar estimates in PKS 2153-69, 3C 205, and 4C 41.17. The lower limit in this range arises from the suggestion that the jet may dither in its direction as it passes through hot spot backflow material close to the jet termination point, creating a dentist drill effect on the inside of a cavity 700 pc in diameter.
Six decades and counting, the formation of hot ~20,000-30,000 K Extreme Horizontal Branch (EHB) stars in Galactic Globular Clusters remains one of the most elusive quests in stellar evolutionary theory. Here we report on two discoveries shattering their currently alleged stable luminosity. The first EHB variability is periodic and cannot be ascribed to binary evolution nor pulsation. Instead, we here attribute it to the presence of magnetic spots: superficial chemical inhomogeneities whose projected rotation induces the variability. The second EHB variability is aperiodic and manifests itself on time-scales of years. In two cases, the six-year light curves display superflare events a mammoth several million times more energetic than solar analogs. We advocate a scenario where the two spectacular EHB variability phenomena are different manifestations of diffuse, dynamo-generated, weak magnetic fields. Ubiquitous magnetic fields, therefore, force an admittance into the intricate matrix governing the formation of all EHBs, and traverse to their Galactic field counterparts. The bigger picture is one where our conclusions bridge similar variability/magnetism phenomena in all radiative-enveloped stars: young main-sequence stars, old EHBs and defunct white dwarfs.
The future of radio astronomy will require instruments with large collecting areas for higher sensitivity, wide fields of view for faster survey speeds, and efficient computing and data rates relative to current capabilities. We describe the first successful deployment of the E-field Parallel Imaging Correlator (EPIC) on the LWA station in Sevilleta, New Mexico, USA (LWA-SV). EPIC is a solution to the computational problem of large interferometers. By gridding and spatially Fourier transforming channelised electric fields from the antennas in real-time, EPIC removes the explicit cross multiplication of all pairs of antenna voltages to synthesize an aperture, reducing the computational scaling from $mathcal{O}(n_a^2)$ to $mathcal{O}(n_g log_2 n_g)$, where $n_a$ is the number of antennas and $n_g$ is the number of grid points. Not only does this save computational costs for dense arrays but it produces very high time resolution images in real time. The GPU-based implementation uses existing LWA-SV hardware and the high performance streaming framework, Bifrost. We examine the practical details of the EPIC deployment and verify the imaging performance by detecting a meteor impact on the atmosphere using continuous all-sky imaging at 50 ms time resolution.
Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Satellite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا