Do you want to publish a course? Click here

A Real-Time, All-Sky, High Time Resolution, Direct Imager for the Long Wavelength Array

81   0   0.0 ( 0 )
 Added by James Kent Mr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The future of radio astronomy will require instruments with large collecting areas for higher sensitivity, wide fields of view for faster survey speeds, and efficient computing and data rates relative to current capabilities. We describe the first successful deployment of the E-field Parallel Imaging Correlator (EPIC) on the LWA station in Sevilleta, New Mexico, USA (LWA-SV). EPIC is a solution to the computational problem of large interferometers. By gridding and spatially Fourier transforming channelised electric fields from the antennas in real-time, EPIC removes the explicit cross multiplication of all pairs of antenna voltages to synthesize an aperture, reducing the computational scaling from $mathcal{O}(n_a^2)$ to $mathcal{O}(n_g log_2 n_g)$, where $n_a$ is the number of antennas and $n_g$ is the number of grid points. Not only does this save computational costs for dense arrays but it produces very high time resolution images in real time. The GPU-based implementation uses existing LWA-SV hardware and the high performance streaming framework, Bifrost. We examine the practical details of the EPIC deployment and verify the imaging performance by detecting a meteor impact on the atmosphere using continuous all-sky imaging at 50 ms time resolution.



rate research

Read More

407 - T. J. W. Lazio 2010
This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.
We demonstrate a new technique for detecting radio transients based on interferometric closure quantities. The technique uses the bispectrum, the product of visibilities around a closed-loop of baselines of an interferometer. The bispectrum is calibration independent, resistant to interference, and computationally efficient, so it can be built into correlators for real-time transient detection. Our technique could find celestial transients anywhere in the field of view and localize them to arcsecond precision. At the Karl G. Jansky Very Large Array (VLA), such a system would have a high survey speed and a 5-sigma sensitivity of 38 mJy on 10 ms timescales with 1 GHz of bandwidth. The ability to localize dispersed millisecond pulses to arcsecond precision in large volumes of interferometer data has several unique science applications. Localizing individual pulses from Galactic pulsars will help find X-ray counterparts that define their physical properties, while finding host galaxies of extragalactic transients will measure the electron density of the intergalactic medium with a single dispersed pulse. Exoplanets and active stars have distinct millisecond variability that can be used to identify them and probe their magnetospheres. We use millisecond time scale visibilities from the Allen Telescope Array (ATA) and VLA to show that the bispectrum can detect dispersed pulses and reject local interference. The computational and data efficiency of the bispectrum will help find transients on a range of time scales with next-generation radio interferometers.
The science cases for incorporating high time resolution capabilities into modern radio telescopes are as numerous as they are compelling. Science targets range from exotic sources such as pulsars, to our Sun, to recently detected possible extragalactic bursts of radio emission, the so-called fast radio bursts (FRBs). Originally conceived purely as an imaging telescope, the initial design of the Murchison Widefield Array (MWA) did not include the ability to access high time and frequency resolution voltage data. However, the flexibility of the MWAs software correlator allowed an off-the-shelf solution for adding this capability. This paper describes the system that records the 100 micro-second and 10 kHz resolution voltage data from the MWA. Example science applications, where this capability is critical, are presented, as well as accompanying commissioning results from this mode to demonstrate verification.
An apparatus to search for optical flashes in the sky is described. It has been optimized for gamma ray bursts (GRB) optical counterparts. It consists of 2x16 cameras covering all the sky. The sky is monitored continuously and the data are analysed on-line. It has self-triggering capability and can react to external triggers with negative delay. The prototype with two cameras has been installed at Las Campanas (Chile) and is operational from July 2004. The paper presents general idea and describes the apparatus in detail. Performance of the prototype is briefly reviewed and perspectives for the future are outlined.
The radio-wavelength detection of extensive air showers (EAS) initiated by cosmic-ray interactions in the Earths atmosphere is a promising technique for investigating the origin of these particles and the physics of their interactions. The Low Frequency Array (LOFAR) and the Owens Valley Long Wavelength Array (OVRO-LWA) have both demonstrated that the dense cores of low frequency radio telescope arrays yield detailed information on the radiation ground pattern, which can be used to reconstruct key EAS properties and infer the primary cosmic-ray composition. Here, we demonstrate a new observation mode of the Murchison Widefield Array (MWA), tailored to the observation of the sub-microsecond coherent bursts of radiation produced by EAS. We first show how an aggregate 30.72 MHz bandwidth (3072x 10 kHz frequency channels) recorded at 0.1 ms resolution with the MWAs voltage capture system (VCS) can be synthesised back to the full bandwidth Nyquist resolution of 16.3 ns. This process, which involves `inverting two sets of polyphase filterbanks, retains 90.5% of the signal-to-noise of a cosmic ray signal. We then demonstrate the timing and positional accuracy of this mode by resolving the location of a calibrator pulse to within 5 m. Finally, preliminary observations show that the rate of nanosecond radio-frequency interference (RFI) events is 0.1 Hz, much lower than that found at the sites of other radio telescopes that study cosmic rays. We conclude that the identification of cosmic rays at the MWA, and hence with the low-frequency component of the Square Kilometre Array, is feasible with minimal loss of efficiency due to RFI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا