Do you want to publish a course? Click here

TESS spots a hot Jupiter with an inner transiting Neptune

145   0   0.0 ( 0 )
 Added by Xu Chelsea Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hot Jupiters are rarely accompanied by other planets within a factor of a few in orbital distance. Previously, only two such systems have been found. Here, we report the discovery of a third system using data from the Transiting Exoplanet Survey Satellite (TESS). The host star, TOI-1130, is an 11th magnitude K-dwarf in the Gaia G band. It has two transiting planets: a Neptune-sized planet ($3.65pm 0.10$ $R_E$) with a 4.1-day period, and a hot Jupiter ($1.50^{+0.27}_{-0.22}$ $R_J$) with an 8.4-day period. Precise radial-velocity observations show that the mass of the hot Jupiter is $0.974^{+0.043}_{-0.044}$ $M_J$. For the inner Neptune, the data provide only an upper limit on the mass of 0.17 $M_J$ (3$sigma$). Nevertheless, we are confident the inner planet is real, based on follow-up ground-based photometry and adaptive optics imaging that rule out other plausible sources of the TESS transit signal. The unusual planetary architecture of and the brightness of the host star make TOI-1130 a good test case for planet formation theories, and an attractive target for future spectroscopic observations.



rate research

Read More

We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (Mstar = 0.92 +/- 0.03 MSun, Rstar = 1.03 +/- 0.03 RSun, tau_star = 10 +/- 2 Gyr). With a mass of Mb = 16.6 +/- 1.3 MEarth, a radius of Rb = 4.71 +/- 0.17 REarth, and an orbital period of P ~ 6 days, HD219666b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with [email protected]. We used the co-added HARPS spectrum to derive the host star fundamental parameters (Teff = 5527 +/- 65 K, log g = 4.40 +/- 0.11 (cgs), [Fe/H]= 0.04 +/- 0.04 dex, log RHK = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14} M_{J}$, $R_{p}=1.38pm0.04 R_{J}$) orbiting a middle-aged star ($log g=4.152^{+0.030}_{-0.043}$) in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone ($beta=-79.59^{circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.
We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subsequently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.
We report the discovery and characterization of a transiting warm sub-Neptune planet around the nearby bright ($V=8.75$ mag, $K=7.15$ mag) solar twin HD 183579, delivered by the Transiting Exoplanet Survey Satellite (TESS). The host star is located $56.8pm0.1$ pc away with a radius of $R_{ast}=0.97pm0.02 R_{odot}$ and a mass of $M_{ast}=1.03pm0.05 M_{odot}$. We confirm the planetary nature by combining space and ground-based photometry, spectroscopy, and imaging. We find that HD 183579b (TOI-1055b) has a radius of $R_{p}=3.53pm0.13 R_{oplus}$ on a $17.47$ day orbit with a mass of $M_{p}=11.2pm5.4 M_{oplus}$ ($3sigma$ mass upper limit of $27.4 M_{oplus}$). HD 183579b is the fifth brightest known sub-Neptune planet system in the sky, making it an excellent target for future studies of the interior structure and atmospheric properties. By performing a line-by-line differential analysis using the high resolution and signal-to-noise ratio HARPS spectra, we find that HD 183579 joins the typical solar twin sample, without a statistically significant refractory element depletion.
We confirm the planetary nature of a warm Jupiter transiting the early M dwarf TOI-1899, using a combination of available TESS photometry; high-precision, near-infrared spectroscopy with the Habitable-zone Planet Finder; and speckle and adaptive optics imaging. The data reveal a transiting companion on an $sim29$-day orbit with a mass and radius of $0.66pm0.07 mathrm{M_{J}}$ and $1.15_{-0.05}^{+0.04} mathrm{R_{J}}$, respectively. The star TOI-1899 is the lowest-mass star known to host a transiting warm Jupiter, and we discuss the follow-up opportunities afforded by a warm ($mathrm{T_{eq}}sim362$ K) gas giant orbiting an M0 star. Our observations reveal that TOI-1899.01 is a puffy warm Jupiter, and we suggest additional transit observations to both refine the orbit and constrain the true dilution observed in TESS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا