Do you want to publish a course? Click here

Merger driven ULIRG-QSO evolution: The case of 3C 48

56   0   0.0 ( 0 )
 Added by Jens Zuther
 Publication date 2005
  fields Physics
and research's language is English
 Authors J. Zuther




Ask ChatGPT about the research

The QSO 3C 48 and its host galaxy constitute a nearby template object of the proposed merger-driven evolutionary sequence from ULIRGs to QSOs. In this contribution multi-wavelength observations and N-body simulations studying the structural and compositional properties of this late-stage major merger will be presented. Key questions addressed will be the nature of the apparent second nucleus 3C 48A and absence of a counter tidal tail. The results will be used to review the role of 3C 48 in the ULIRG-QSO evolutionary scenario.



rate research

Read More

55 - J. Zuther 2003
In this contribution we present new near-infrared (NIR) data on the quasar 3C 48 and its host galaxy, obtained with ISAAC at the Very Large Telescope (ESO, Chile). The NIR images and spectra reveal a reddening of several magnitudes caused by extinction due to molecular material and dust within the host galaxy. For the first time we clearly identify the highly reddened potential second nucleus 3C 48A about 100 northeast of the quasar position in the NIR. Its reddening can be accounted for by warm dust, heated by star formation or an interaction of the 3C 48 radio jet with the interstellar medium, or both. The NIR colors and the CO(6-3) absorption feature both give a stellar contribution of about 30 percent to the QSO-dominated light. These results will contribute to the question of how the nuclear activity and the apparent merger process are influencing the host galaxy properties and they will improve existing models.
58 - J. Zuther 2003
In this paper we present new near infrared (NIR) imaging and spectroscopic data of the quasar 3C 48 and its host galaxy. The data were obtained with the ESO-VLT camera ISAAC.We report the first detection of the apparent second nucleus 3C 48A about 100NE of the bright QSO nucleus in the NIR bands J, H, and Ks. 3C 48A is highly reddened with respect to the host, which could be due to warm dust, heated by enhanced star formation or by interstellar material intercepting the radio jet. In fact, all colors on the host galaxy are reddened by several magnitudes of visual extinction. Imaging and initial spectroscopy also reveal a stellar content of about 30% to the overall QSO-light in the NIR. These results are important input parameters for future models of the stellar populations by taking extinction into account.
Context. Radio-loud AGNs with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers. Aims. We study the intriguing properties of the powerful (L_bol ~ 10^47 erg s^-1) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra. Methods. We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation. Results. HST imaging shows that the active nucleus is offset by 1.3 +- 0.1 arcsec (i.e. ~11 kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140 +-390 km/s with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger. Conclusions. A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.
280 - D.T. Hoai , P.T. Nhung , P.T. Anh 2013
After a brief reminder of the mechanism of gravitational lensing of extended sources, the particular case of the host galaxy of QSO RXJ0911, a high redshift (z~2.8) quadruply imaged quasar, is explored. The non linearity of the problem, together with the proximity of the source to a cusp of the lens inner caustic, have important consequences on the dependence of the image appearance on the size and shape of the source. Their expected main features and their interpretation in terms of source extension and shape are investigated in a spirit of simplicity and in preparation for the analysis of high sensitivity and spatial resolution images that will soon be within reach with the completion of the Atacama Large Millimeter/submillimeter Array (ALMA). In particular, the information on source size carried by relative image brightness is discussed. Extension of the results to other types of quadruply imaged quasars is briefly considered.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا