Do you want to publish a course? Click here

The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?

53   0   0.0 ( 0 )
 Added by Marco Chiaberge
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Radio-loud AGNs with powerful relativistic jets are thought to be associated with rapidly spinning black holes (BHs). BH spin-up may result from a number of processes, including accretion of matter onto the BH itself, and catastrophic events such as BH-BH mergers. Aims. We study the intriguing properties of the powerful (L_bol ~ 10^47 erg s^-1) radio-loud quasar 3C 186. This object shows peculiar features both in the images and in the spectra. Methods. We utilize near-IR Hubble Space Telescope (HST) images to study the properties of the host galaxy, and HST UV and Sloan Digital Sky Survey optical spectra to study the kinematics of the source. Chandra X-ray data are also used to better constrain the physical interpretation. Results. HST imaging shows that the active nucleus is offset by 1.3 +- 0.1 arcsec (i.e. ~11 kpc) with respect to the center of the host galaxy. Spectroscopic data show that the broad emission lines are offset by -2140 +-390 km/s with respect to the narrow lines. Velocity shifts are often seen in QSO spectra, in particular in high-ionization broad emission lines. The host galaxy of the quasar displays a distorted morphology with possible tidal features that are typical of the late stages of a galaxy merger. Conclusions. A number of scenarios can be envisaged to account for the observed features. While the presence of a peculiar outflow cannot be completely ruled out, all of the observed features are consistent with those expected if the QSO is associated with a gravitational wave (GW) recoiling BH. Future detailed studies of this object will allow us to confirm this type of scenario and will enable a better understanding of both the physics of BH-BH mergers and the phenomena associated with the emission of GW from astrophysical sources.



rate research

Read More

We present the results of integral field spectroscopy of the gravitational wave (GW) recoiling black hole candidate 3C 186. The goal of the observations is to study the kinematics of the [OIII]5007 narrow emission line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines. The results show that i) the spatial structure of the NLR is complex. The [OIII]5007 line shows significant velocity offsets with respect to the systemic redshift of the source. Different components at different velocities (-670, -100, + 75 km s^-1) are produced in different regions of the source. ii) we detect both the narrow and the broad components of the Hbeta line. The narrow component generally follows the kinematics of the [OIII] line, while the broad component is significantly blue-shifted. The peak of the broad line is near the blue end, or possibly outside of the sensitivity band of the instrument, implying a velocity offset of >~1800 km s^-1. This result is in agreement with the interpretation of the QSO as a GW recoiling black hole. The properties of the NLR show that the observed outflows are most likely the effect of radiation pressure on the (photoionized) gas in the interstellar medium of the host galaxy.
Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among Type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar main sequence with both extreme optical FeII emission (R_{FeII} ~ 1) and a large CIV 1549 profile blueshift (~ -1500 km/s). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year timescale consistent with compact steep-spectrum (CSS or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/L_{Edd} quasars we suggest that 3C 57 is an evolved RL quasar (i.e. large Black Hole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong FeII emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low redshift source and resultant unusually high Eddington ratio giving rise to the atypical CIV 1549.
75 - P. Esposito , N.Rea , A. Borghese 2020
The magnetar Swift ,J1818.0-1607 was discovered in March 2020 when Swift detected a 9 ms hard X-ray burst and a long-lived outburst. Prompt X-ray observations revealed a spin period of 1.36 s, soon confirmed by the discovery of radio pulsations. We report here on the analysis of the Swift burst and follow-up X-ray and radio observations. The burst average luminosity was $L_{rm burst} sim2times 10^{39}$ erg/s (at 4.8 kpc). Simultaneous observations with XMM-Newton and NuSTAR three days after the burst provided a source spectrum well fit by an absorbed blackbody ($N_{rm H} = (1.13pm0.03) times 10^{23}$ cm$^{-2}$ and $kT = 1.16pm0.03$ keV) plus a power-law ($Gamma=0.0pm1.3$) in the 1-20 keV band, with a luminosity of $sim$$8times10^{34}$ erg/s, dominated by the blackbody emission. From our timing analysis, we derive a dipolar magnetic field $B sim 7times10^{14}$ G, spin-down luminosity $dot{E}_{rm rot} sim 1.4times10^{36}$ erg/s and characteristic age of 240 yr, the shortest currently known. Archival observations led to an upper limit on the quiescent luminosity $<$$5.5times10^{33}$ erg/s, lower than the value expected from magnetar cooling models at the source characteristic age. A 1 hr radio observation with the Sardinia Radio Telescope taken about 1 week after the X-ray burst detected a number of strong and short radio pulses at 1.5 GHz, in addition to regular pulsed emission; they were emitted at an average rate 0.9 min$^{-1}$ and accounted for $sim$50% of the total pulsed radio fluence. We conclude that Swift ,J1818.0-1607 is a peculiar magnetar belonging to the small, diverse group of young neutron stars with properties straddling those of rotationally and magnetically powered pulsars. Future observations will make a better estimation of the age possible by measuring the spin-down rate in quiescence.
The existence of BAL outflows in only radio-quiet QSOs was thought to be an important clue to mass ejection and the radio-loud - radio-quiet dichotomy. Recently a few radio-loud BAL QSOs have been discovered at high redshift. We present evidence that PKS 1004+13 is a radio-loud BAL QSO. It would be the first known at low-redshift (z = 0.24), and one of the most radio luminous. For PKS 1004+13, there appear to be broad absorption troughs of O VI, N V, Si IV, and C IV, indicating high-ionization outflows up to about 10,000 km/s. There are also two strong, broad (~500 km/s), high-ionization, associated absorption systems that show partial covering of the continuum source. The strong UV absorption we have detected suggests that the extreme soft-X-ray weakness of PKS 1004+13 is primarily the result of absorption. The large radio-lobe dominance indicates BAL and associated gas at high inclinations to the central engine axis, perhaps in a line-of-sight that passes through an accretion disk wind.
We report the discovery of a giant double-lobed (lobe-core-lobe) radio-continuum structure associated with QSO J0443.8-6141 at z=0.72. This QSO was originally identified during the follow-up of a sample of ROSAT All Sky Survey sources at radio and optical frequencies. With a linear size of ~0.77 Mpc, QSO J0443.8-6141 is classified as a giant radio source (GRS); based on its physical properties, we classify QSO J0443.8-6141 as a FR II radio galaxy. High-resolution observations are required to reliably identify GRSs; the next generation of southern-sky radio and optical surveys will be crucial to increasing our sample of these objects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا