No Arabic abstract
Results of a CCD study of the variability of the cataclysmic variable BG CMi obtained at the Korean 1.8m telescope in 2002-2005 are presented. The multi-comparison star method had been applied for better accuracy estimates. The linear ephemeris based on 19 mean maxima for 2002--2005 is HJD 2453105.31448(6)+0.01057257716(198)(E-764707). The period differs from that predicted by the quadratic ephemeris by Pych et al. (1996) leading to a possible cycle miscount. The statistically optimal ephemeris is a fourth-order polynomial, as a quadratic or even a cubic ephemeris leads to unaceptably large residuals: Min.HJD=$ 2445020.28095(28)+0.0105729609(57)E -1.58(32)cdot10^{-13}E^2-5.81(64)cdot10^{-19}E^3+4.92(41)cdot10^{-25}E^4.$ Thus the rate of the spin-up of the white dwarf is decreasing. An alternative explanation is that the spin-up has been stopped during recent years. The deviations between the amplutudes of the spin variability in V and R, as well as between phases are not statistically significant. However, the orbital light curves exhibit distinct difference; the corresponding color index shows a nearly sinusoidal shape with a maximum at orbital phase $sim0.2.$ The variations of the amplitude of spin waves shows a short maximum at the phase of the orbital dip. The corrected ephemeris for orbital minima is Min.HJD=$2448368.7225(12)+0fd13474841(6)cdot(E-24849)$ with a narrow dip occuring 0.07P later. The rate of the spin period variation seems to be changed, justifying the necessity of regular observations of intermediate polars.
We present a review of the results of long-term photometric monitoring of selected magnetic cataclysmic binary systems, which belong to a class named Intermediate polars. We found a spin period variability in the V2306 Cygni system. We confirm the strong negative superhump variations in the intermediate polar RX J2133.7+5107 and improved a characteristic time of white dwarf spin-up in this system. We have investigated the periodic modulation of the spin phases with the orbital phase in MU Camelopardalis. We can propose simple explanation as the influence of orbital sidebands in the periodic signal produced by intermediate polar.
We present photometric and spectral observations of the symbiotic star ZZ CMi. We detect intranight variability - flickering and smooth variations in U band. The amplitude of the flickering is about 0.10-0.20 mag in U band. In the B band the variability is lower, with amplitude less than 0.03 mag. We also detect variability in the H-alpha and H-beta emission lines, and find an indication for outflow with velocity of about 120-150 km/s. The results indicate that ZZ CMi is an accretion powered symbiotic containing an M4-M6 III cool component with a white dwarf resembling recurrent novae and jet-ejecting symbiotic stars.
The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the op- tical radiation with an amplitude ~1^m.5. The 0^m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180 deg. Then the spot drifts during ~0.1 beat phase before undergoing a second phase jump between spots separated by less than 180 deg. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.
We present results of a study of the fast timing variability of the magnetic cataclysmic variable (mCV) EX Hya. It was previously shown that one may expect the rapid flux variability of mCVs to be smeared out at timescales shorter than the cooling time of hot plasma in the post shock region of the accretion curtain near the WD surface. Estimates of the cooling time and the mass accretion rate, thus provide us with a tool to measure the density of the post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have probed the high frequencies in the aperiodic noise of one of the brightest mCV EX Hya with the help of optical telescopes, namely SALT and the SAAO 1.9m telescope. We place upper limits on the plasma cooling timescale $tau<$0.3 sec, on the fractional area of the accretion curtain footprint $f<1.6times10^{-4}$, and a lower limit on the specific mass accretion rate $dot{M}/A gtrsim $3 g/sec/cm$^{-2}$. We show that measurements of accretion column footprints via eclipse mapping highly overestimate their areas. We deduce a value of $Delta r/r lesssim 10^{-3}$ as an upper limit to the penetration depth of the accretion disc plasma at the boundary of the magnetosphere.
We analyse the K2 short cadence data of the intermediate polar FO Aqr and provide accurate and updated orbital and spin periodicities. We additionally find small spin period changes as a function of orbital phase of ~0.02 seconds translating to velocities of ~ a few km/s. The obtained orbital-folded velocity profile displays two clear maxima and minima, and cannot be explained by the radial velocity of the orbiting white dwarf. Instead we propose that the observed velocities are the sum of the radial velocities of both the white dwarf and of the stellar surface facing the white dwarf which reprocesses the WD spin pulses. This combination can explain the observed low velocities in FO Aqr. However asymmetries in the orbital configuration are required to explain the double peaked velocity profile. One possible scenario would invoke binary eccentricity. We thus developed a simple binary model to explain and fit our observations, and find a small binary eccentricity of e=0.03. Although small, persistent eccentricity in a close interacting binary would induce enhanced mass transfer occurring preferentially at periastron passages. We thus discuss alternative scenarios where other asymmetries might explain our observations assuming circular orbits. Since FO Aqr is the first system where the combined radial velocities of both the WD and secondary surface have been measured, it is possible that other mass-transferring binaries also display similar velocity curves when observed with Kepler. These will provide additional valuable tests to either confirm or rule out small eccentricities in similar systems.