Do you want to publish a course? Click here

Doppler shifts on the spin period of the intermediate polar FO Aqr with K2

92   0   0.0 ( 0 )
 Added by Simone Scaringi Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the K2 short cadence data of the intermediate polar FO Aqr and provide accurate and updated orbital and spin periodicities. We additionally find small spin period changes as a function of orbital phase of ~0.02 seconds translating to velocities of ~ a few km/s. The obtained orbital-folded velocity profile displays two clear maxima and minima, and cannot be explained by the radial velocity of the orbiting white dwarf. Instead we propose that the observed velocities are the sum of the radial velocities of both the white dwarf and of the stellar surface facing the white dwarf which reprocesses the WD spin pulses. This combination can explain the observed low velocities in FO Aqr. However asymmetries in the orbital configuration are required to explain the double peaked velocity profile. One possible scenario would invoke binary eccentricity. We thus developed a simple binary model to explain and fit our observations, and find a small binary eccentricity of e=0.03. Although small, persistent eccentricity in a close interacting binary would induce enhanced mass transfer occurring preferentially at periastron passages. We thus discuss alternative scenarios where other asymmetries might explain our observations assuming circular orbits. Since FO Aqr is the first system where the combined radial velocities of both the WD and secondary surface have been measured, it is possible that other mass-transferring binaries also display similar velocity curves when observed with Kepler. These will provide additional valuable tests to either confirm or rule out small eccentricities in similar systems.



rate research

Read More

We present photometry of the intermediate polar FO Aquarii obtained as part of the K2 mission using the Kepler space telescope. The amplitude spectrum of the data confirms the orbital period of 4.8508(4) h, and the shape of the light curve is consistent with the outer edge of the accretion disk being eclipsed when folded on this period. The average flux of FO Aquarii changed during the observations, suggesting a change in the mass accretion rate. There is no evidence in the amplitude spectrum of a longer period that would suggest disk precession. The amplitude spectrum also shows the white dwarf spin period of 1254.3401(4) s, the beat period of 1351.329(2) s, and 31 other spin and orbital harmonics. The detected period is longer than the last reported period of 1254.284(16) s, suggesting that FO Aqr is now spinning down, and has a positive $dot{P}$. There is no detectable variation in the spin period over the course of the K2 observations, but the phase of the spin cycle is correlated with the system brightness. We also find the amplitude of the beat signal is correlated with the system brightness.
We present the first ever X-ray data taken of an intermediate polar, FO Aqr, when in a low accretion state and during the subsequent recovery. The Swift and Chandra X-ray data taken during the low accretion state in July 2016 both show a softer spectrum when compared to archival data taken when FO Aqr was in a high state. The X-ray spectrum in the low state showed a significant increase in the ratio of the soft X-ray flux to the hard X-ray flux due to a change in the partial covering fraction of the white dwarf from $>85%$ to $70^{+5}_{-8}%$ and a change in the hydrogen column density within the disc from 19$^{+1.2}_{-0.9}times 10^{22}$ cm$^{-2}$ to 1.3$^{+0.6}_{-0.3}times 10^{22}$ cm$^{-2}$. XMM-Newton observations of FO Aqr during the subsequent recovery suggest that the system had not yet returned to its typical high state by November 2016, with the hydrogen column density within the disc found to be 15$^{+3.0}_{-2.0}$ cm$^{-2}$. The partial covering fraction varied in the recovery state between $85%$ and $95%$. The spin period of the white dwarf in 2014 and 2015 has also been refined to 1254.3342(8) s. Finally, we find an apparent phase difference between the high state X-ray pulse and recovery X-ray pulse of 0.17, which may be related to a restructuring of the X-ray emitting regions within the system.
160 - Joseph Patterson 2020
We report the detailed history of spin-period changes in five intermediate polars (DQ Herculis, AO Piscium, FO Aquarii, V1223 Sagittarii, and BG Canis Minoris) during the 30-60 years since their original discovery. Most are slowly spinning up, although there are sometimes years-long episodes of spin-down. This is supportive of the idea that the underlying magnetic white dwarfs are near spin equilibrium. In addition to the ~40 stars sharing many properties and defined by their strong, pulsed X-ray emission, there are a few rotating much faster (P<80 s), whose membership in the class is still in doubt -- and who are overdue for closer study.
We present a review of the results of long-term photometric monitoring of selected magnetic cataclysmic binary systems, which belong to a class named Intermediate polars. We found a spin period variability in the V2306 Cygni system. We confirm the strong negative superhump variations in the intermediate polar RX J2133.7+5107 and improved a characteristic time of white dwarf spin-up in this system. We have investigated the periodic modulation of the spin phases with the orbital phase in MU Camelopardalis. We can propose simple explanation as the influence of orbital sidebands in the periodic signal produced by intermediate polar.
The Kepler spacecraft observed a total of only four AM Herculis cataclysmic variable stars during its lifetime. We analyze the short-cadence K2 light curve of one of those systems, Tau 4 (RX J0502.8+1624), which underwent a serendipitous jump from a low-accretion state into a high state during the final days of the observation. Apart from one brief flare, there was no evidence of accretion during the 70 d of observations of the low state. As Tau 4 transitioned into a high state, the resumption of accretion was very gradual, taking approximately six days (~90 binary orbits). We supplement Tau 4s K2 light curve with time-resolved spectroscopy obtained in both high and low states of accretion. High-excitation lines, such as He II 468.6 nm, were extraordinarily weak, even when the system was actively accreting. This strongly suggests the absence of an accretion shock, placing Tau 4 in the bombardment regime predicted for AM Herculis systems with low accretion rates. In both the high-state and low-state spectra, Zeeman absorption features from the white dwarfs photosphere are present and reveal a surface-averaged field strength of $15pm2$ MG. Remarkably, the high-state spectra also show Zeeman-split emission lines produced in a region with a field strength of $12pm1$ MG. Zeeman emission has not been previously reported in an AM Herculis system, and we propose that the phenomenon is caused by a temperature inversion in the WDs atmosphere near the accretion region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا