Do you want to publish a course? Click here

Discovery of an extended ultraviolet disk in the nearby galaxy NGC4625

102   0   0.0 ( 0 )
 Added by Armando Gil de Paz
 Publication date 2005
  fields Physics
and research's language is English
 Authors A. Gil de Paz




Ask ChatGPT about the research

Recent far-UV (FUV) and near-UV (NUV) observations of the nearby galaxy NGC4625 made by the Galaxy Evolution Explorer (GALEX) show the presence of an extended UV disk reaching 4 times the optical radius of the galaxy. The UV-to-optical colors suggest that the bulk of the stars in the disk of NGC4625 are currently being formed, providing a unique opportunity to study today the physics of star formation under conditions similar to those when the normal disks of spiral galaxies like the Milky Way first formed. In the case of NGC4625, the star formation in the extended disk is likely to be triggered by interaction with NGC4618 and possibly also with the newly discovered galaxy NGC4625A. The positions of the FUV complexes in the extended disk coincide with peaks in the H I distribution. The masses of these complexes are in the range 10^3-10^4 Msun with their Halpha emission (when present) being dominated by ionization from single stars.



rate research

Read More

We present the results from the analysis of optical spectra of 31 Halpha-selected regions in the extended UV (XUV) disks of M83 (NGC5236) and NGC4625 recently discovered by GALEX. The spectra were obtained using IMACS at Las Campanas Observatory 6.5m Magellan I telescope and COSMIC at the Palomar 200-inch telescope, respectively for M83 and NGC4625. The line ratios measured indicate nebular oxygen abundances (derived from the R23 parameter) of the order of Zsun/5-Zsun/10. For most emission-line regions analyzed the line fluxes and ratios measured are best reproduced by models of photoionization by single stars with masses in the range 20-40 Msun and oxygen abundances comparable to those derived from the R23 parameter. We find indications for a relatively high N/O abundance ratio in the XUV disk of M83. Although the metallicities derived imply that these are not the first stars formed in the XUV disks, such a level of enrichment could be reached in young spiral disks only 1 Gyr after these first stars would have formed. The amount of gas in the XUV disks allow maintaining the current level of star formation for at least a few Gyr.
100 - Sarah M. Bruzzese 2019
Using Hubble Space Telescope ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations of four fields within the extended ultraviolet disk (XUV disk) of M83. These observations show a clumpy distribution of main-sequence stars and a mostly smooth distribution of red giant branch stars. We constrain the upper-end of the initial mass function (IMF) in the outer disk using the detected population of main-sequence stars and an assumed constant star formation rate (SFR) over the last 300 Myr. By comparing the observed main-sequence luminosity function to simulations, we determine the best-fitting IMF to have a power law slope $alpha=-2.35 pm 0.3$ and an upper-mass limit $rm M_{u}=25_{-3}^{+17} , M_odot$. This IMF is consistent with the observed H$alpha$ emission, which we use to provide additional constraints on the IMF. We explore the influence of deviations from the constant SFR assumption, finding that our IMF conclusions are robust against all but strong recent variations in SFR, but these are excluded by causality arguments. These results, along with our similar studies of other nearby galaxies, indicate that some XUV disks are deficient in high-mass stars compared to a Kroupa IMF. There are over one hundred galaxies within 5 Mpc, many already observed with HST, thus allowing a more comprehensive investigation of the IMF, and how it varies, using the techniques developed here.
We present an analysis of an occulting galaxy pair, serendipitously discovered in ACS Nearby Galaxy Survey Treasury (ANGST) observations of NGC 253 taken with Hubble Space Telescopes Advanced Camera for Survey in F475W, F606W$ and F814W (SDSS-g, broad V and I). The foreground disk system (at z < 0.06) shows a dusty disk much more extended than the starlight, with spiral lanes seen in extinction out to 1.5 R_25, approximately six half-light radii. This pair is the first where extinction can be mapped reliably out to this distance from the center. The spiral arms of the extended dust disk show typical extinction values of A_F475W ~ 0.25, A_F606W ~ 0.25, and A_F814W ~ 0.15. The extinction law inferred from these measures is similar to the local Milky Way one, and we show that the smoothing effects of sampling at limited spatial resolution (<57 pc, in these data) flattens the observed function through mixing of regions with different extinction. This galaxy illustrates the diversity of dust distributions in spirals, and the limitations of adopting a single dust model for optically similar galaxies. The ideal geometry of this pair of overlapping galaxies and the high sampling of HST data make this dataset ideal to analyze this pair with three separate approaches to overlapping galaxies: (A) a combined fit, rotating copies of both galaxies, (B) a simple flip of the background image and (C) an estimate of the original fluxes for the individual galaxies based on reconstructions of their proper isophotes. We conclude that in the case of high quality data such as these, isophotal models are to be preferred.
245 - Bettoni , D. , Buson 2010
The Galaxy Ultraviolet Explorer (GALEX) satellite has recently shown the presence of an extended, outer ring studded with UV-bright knots surrounding the lenticular galaxy NGC 4262. Such a structure---not detected in the optical---is coupled with a ring of atomic (HI) gas. We want to show that both star-forming and HI rings surrounding this SB0 galaxy share the same radial distance from the galaxy center and spatial orientation. We want also to model the kinematics of the ring(s) and of the galaxy body. We make use of archive FUV and NUV GALEX data plus HI observations from the literature. We confirm that the UV-bright and atomic gas rings of NGC 4262 have the same extent and projected spatial orientation. Their kinematics is not coupled with that of the galaxy stars. It is possible that NGC 4262 has undergone a major gas stripping event in the past which gave origin to the present necklace of UV-bright knots.
We have initiated a search for extended ultraviolet disk (XUV-disk) galaxies in the local universe. Herein, we compare GALEX UV and visible--NIR images of 189 nearby (D$<$40 Mpc) S0--Sm galaxies included in the GALEX Atlas of Nearby Galaxies and present the first catalogue of XUV-disk galaxies. We find that XUV-disk galaxies are surprisingly common but have varied relative (UV/optical) extent and morphology. Type~1 objects ($ga$20% incidence) have structured, UV-bright/optically-faint emission features in the outer disk, beyond the traditional star formation threshold. Type~2 XUV-disk galaxies ($sim$10% incidence) exhibit an exceptionally large, UV-bright/optically-low-surface-brightness (LSB) zone having blue $UV-K_s$ outside the effective extent of the inner, older stellar population, but not reaching extreme galactocentric distance. If the activity occuring in XUV-disks is episodic, a higher fraction of present-day spirals could be influenced by such outer disk star formation. Type~1 disks are associated with spirals of all types, whereas Type~2 XUV-disks are predominantly found in late-type spirals. Type~2 XUV-disks are forming stars quickly enough to double their [presently low] stellar mass in the next Gyr (assuming a constant SF rate). XUV-disk galaxies of both types are systematically more gas-rich than the general galaxy population. Minor external perturbation may stimulate XUV-disk incidence, at least for Type~1 objects. XUV-disks are the most actively evolving galaxies growing via inside-out disk formation in the current epoch, and may constitute a segment of the galaxy population experiencing significant, continued gas accretion from the intergalactic medium or neighboring objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا