The Galaxy Ultraviolet Explorer (GALEX) satellite has recently shown the presence of an extended, outer ring studded with UV-bright knots surrounding the lenticular galaxy NGC 4262. Such a structure---not detected in the optical---is coupled with a ring of atomic (HI) gas. We want to show that both star-forming and HI rings surrounding this SB0 galaxy share the same radial distance from the galaxy center and spatial orientation. We want also to model the kinematics of the ring(s) and of the galaxy body. We make use of archive FUV and NUV GALEX data plus HI observations from the literature. We confirm that the UV-bright and atomic gas rings of NGC 4262 have the same extent and projected spatial orientation. Their kinematics is not coupled with that of the galaxy stars. It is possible that NGC 4262 has undergone a major gas stripping event in the past which gave origin to the present necklace of UV-bright knots.
A large fraction of otherwise normal galaxies shows a weak nuclear activity. One of the signatures of the low-luminosity active galactic nuclei (LLAGNs) is the ultraviolet variability which was serendipitously discovered in the center of some low-ionization nuclear emission-line region (LINER) galaxies. There is a pressing need to acquire better statistics about UV flaring and variability in galaxy nuclei, both in terms of the number and monitoring of targets. The Science Data Archive of the Hubble Space Telescope was queried to find all the elliptical galaxies with UV images obtained in different epochs with the Wide Field Planetary Camera 2 (WFPC2) and possibly with nuclear spectra obtained with the Space Telescope Imaging Spectrograph (STIS) in the region of the Halpha emission line. These data were found only for the elliptical radiogalaxy NGC 4278. The UV flux of the nuclear source of NGC 4278 was measured by means of aperture photometry on the WFPC2/F218W images obtained between June 1994 and January 1995. The mass of the central supermassive black hole (SBH) was estimated by measuring the broad components of the emission lines observed in the STIS/G750M spectrum and assuming that the gas is uniformly distributed in a sphere. The nucleus of NGC 4278 hosts a barely resolved but strongly variable UV source. Its UV luminosity increased by a factor of 1.6 in a period of 6 months. The amplitude and scale time of the UV flare in NGC 4278 are remarkably similar to those of the brightest UV nuclear transients which were earlier found in other LLAGNs. The mass of the SBH was found to be in the range between 7x10^7 and 2x10^9 M_sun. This is in agreement with previous findings based on different assumptions about the gas distribution and with the predictions based on the galaxy velocity dispersion.
Using deep Subaru/FOCAS spectra of 34 HII regions in both the inner and outer parts of the extended ultraviolet (XUV) disc galaxy NGC 4625 we have measured an abundance gradient out to almost 2.5 times the optical isophotal radius. We applied several strong line abundance calibrations to determine the HII region abundances, including R23, [NII]/[OII], [NII]/Ha as well as the [OIII]4363 auroral line, which we detected in three of the HII regions. We find that at the transition between the inner and outer disc the abundance gradient becomes flatter. In addition, there appears to be an abundance discontinuity in proximity of this transition. Several of our target HII regions appear to deviate from the ionisation sequence defined in the [NII]/Ha vs. [OIII]/Hb diagnostic diagram by bright extragalactic HII regions. Using theoretical models we conclude that the most likely explanations for these deviations are either related to the time evolution of the HII regions, or stochastic variations in the ionising stellar populations of these low mass HII regions, although we are unable to distinguish between these two effects. Such effects can also impact on the reliability of the strong line abundance determinations.
Recent far-UV (FUV) and near-UV (NUV) observations of the nearby galaxy NGC4625 made by the Galaxy Evolution Explorer (GALEX) show the presence of an extended UV disk reaching 4 times the optical radius of the galaxy. The UV-to-optical colors suggest that the bulk of the stars in the disk of NGC4625 are currently being formed, providing a unique opportunity to study today the physics of star formation under conditions similar to those when the normal disks of spiral galaxies like the Milky Way first formed. In the case of NGC4625, the star formation in the extended disk is likely to be triggered by interaction with NGC4618 and possibly also with the newly discovered galaxy NGC4625A. The positions of the FUV complexes in the extended disk coincide with peaks in the H I distribution. The masses of these complexes are in the range 10^3-10^4 Msun with their Halpha emission (when present) being dominated by ionization from single stars.
Deep Effelsberg HI spectra of the one-armed, bright Virgo cluster spiral galaxy NGC 4254 are presented.Five different positions were observed in the 21 cm HI line with the Effelsberg 100-m telescope: one in the center and 4 located one HPBW to the NE, NW, SW, and SE, respectively, from the galaxy center. The spectra are compared to existing deep VLA observations, and the single dish and interferometric HI data are used to constrain a dynamical model which includes the effects of ram pressure. The peculiar, one-armed spiral pattern of NGC 4254 and its distorted and kinematically perturbed atomic gas distribution can be explained by a close and rapid encounter ~280 Myr ago with another massive Virgo galaxy, followed by ram pressure stripping that is still ongoing. The stripping occurs almost face-on, since the angle between the disk and the orbital plane is 70 degrees. The galaxy with which NGC 4254 had its encounter is tentatively identified as the lenticular NGC 4262.
We present the first detection of CO emission lines in the Halpha filaments at distances as far as 50 kpc from the centre of the galaxy NGC 1275. This gas is probably dense (>=10E3 cm-3). However, it is not possible to accurately determine the density and the kinetic temperature of this relatively warm gas (Tkin~20-500K) with the current data only. The amount of molecular gas in the filaments is large 10E9 Msun (assuming a Galactic N(H2)/Ico ratio). This is 10% of the total mass of molecular gas detected in this cD galaxy. This gas has large-scale velocities comparable to those seen in Halpha. The origin of the filaments is still unclear, but their formation is very likely linked to the AGN positive feedback (Revaz et al., 2008) that regulates the cooling of the surrounding X-ray-emitting gas as suggested by numerical simulations. We also present high-resolution spectra of the galaxy core. The spatial characteristics of the double-peaked profile suggest that the molecular web of filaments and streamers penetrates down to radii of less than 2 kpc from the central AGN and eventually feed the galaxy nucleus. The mass of gas inside the very central region is ~10E^9 Msun, and is similar to the mass of molecular gas found in the filaments.