Do you want to publish a course? Click here

The red optical afterglow of GRB 030725

134   0   0.0 ( 0 )
 Added by Giovanna Pugliese
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a photometric study of the optical counterpart of the long-duration Gamma Ray Burst (GRB) 030725, which triggered the HETE FREGATE and WXM instruments on July 25th, 2003, and lasted more than 160s. An optical counterpart was identified at the Bronberg Observatory in South Africa about 7 hours after the burst occurred. The optical afterglow (OA) was observed between 4 and 15 days after the burst with the 1.54m Danish telescope at La Silla in the V, Rc, and Ic bands. We fit a broken power law to the data and determine a break time in the light curve between 16 hours and 4.7 days after the first detection of the burst. The decay slope is alpha1 = -0.59 +0.59/-0.44 before and alpha2 = -1.43 +/- 0.06 after the break. A bump may be present in the light curve, only significant at the 2-sigma level, 13.9 days after the main burst. The spectral slope of the OA, measured 12 days after the burst, is -2.9 +/- 0.6 , i.e. it falls in the extreme red end of the distribution of previous OA spectral slopes. Observations of the field 8 months after the burst with the EMMI instrument on the NTT telescope (La Silla) resulted in an upper limit of Rc=24.7 mag for the host galaxy of GRB 030725. The OA of GRB 030725 was discovered at a private, non-professional observatory and we point out that with the current suite of gamma ray satellites, an effort to organize future contributions of amateur observers may provide substantial help in GRB light curve follow up efforts.



rate research

Read More

330 - Y.F. Huang , K.S. Cheng , T.T. Gao 2005
The best-sampled afterglow light curves are available for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component jet model and the refreshed shock model, although a sudden density-jump in the circumburst environment is also a potential choice. Here we re-examine the optical afterglow of GRB 030329 numerically in light of the three models. In the density-jump model, no obvious rebrightening can be produced at the jump moment. Additionally, after the density jump, the predicted flux density decreases rapidly to a level that is significantly below observations. A simple density-jump model thus can be excluded. In the two-component jet model, although the observed late afterglow (after 1.6 days) can potentially be explained as emission from the wide-component, the emergence of this emission actually is too slow and it does not manifest as a rebrightening as previously expected. The energy-injection model seems to be the most preferred choice. By engaging a sequence of energy-injection events, it provides an acceptable fit to the rebrightening at $sim 1.6$ d, as well as the whole observed light curve that extends to $sim 80$ d. Further studies on these multiple energy-injection processes may provide a valuable insight into the nature of the central engines of gamma-ray bursts.
Gamma-ray bursts are powerful probes of the early universe, but locating and identifying very distant GRBs remains challenging. We report here the discovery of the K-band afterglow of Swift GRB 060923A, imaged within the first hour post-burst, and the faintest so far found. It was not detected in any bluer bands to deep limits, making it a candidate very high redshift burst (z>11). However, our later-time optical imaging and spectroscopy reveal a faint galaxy coincident with the GRB position which, if it is the host, implies a more moderate redshift (most likely z<2.8) and therefore that dust is the likely cause of the very red afterglow colour. This being the case, it is one of the few instances so far found of a GRB afterglow with high dust extinction.
We present optical follow up observations of the long GRB 001007 between 6.14 hours and ~468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light curve at t - to < 3.5 days, as found in other bursts. Upper limits imposed by the LOTIS alerting system 6.14 hours after the gamma ray event provide tentative (1.2 sigma) evidence for a break in the optical light curve. The spectral index beta of the OA yields -1.24 +/- 0.57. These values may be explained both by several fireball jet models and by the cannonball model. Fireball spherical expansion models are not favoured. Late epoch deep imaging revealed the presence of a complex host galaxy system, composed of at least two objects located 1.2 (1.7 sigma) and 1.9 (2.7 sigma) from the afterglow position.
604 - K. Wiersema , S. Covino , K. Toma 2014
Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet, when measured minutes after the burst, and the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after burst in GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and negligable circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blastwave. Here we report the detection of circularly polarized optical light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.
90 - J.P.U. Fynbo 2001
In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours after the burst. Rapid follow-up spectroscopy allowed the determination of the redshift of the burst and a measurement of the host galaxy HI-column density in front of the burst. With late-time narrow band Ly-alpha as well as broad band imaging, we have studied the emission from the host galaxy and found that it is a strong Ly-alpha emitter in a state of active star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا