No Arabic abstract
In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours after the burst. Rapid follow-up spectroscopy allowed the determination of the redshift of the burst and a measurement of the host galaxy HI-column density in front of the burst. With late-time narrow band Ly-alpha as well as broad band imaging, we have studied the emission from the host galaxy and found that it is a strong Ly-alpha emitter in a state of active star formation.
We present the discovery of the Optical Transient (OT) of the long-duration gamma-ray burst GRB000926. The optical transient was detected independently with the Nordic Optical Telescope and at Calar Alto 22.2 hours after the burst. At this time the magnitude of the transient was R = 19.36. The transient faded with a decay slope of about 1.7 during the first two days after which the slope increased abruptly (within a few hours) to about 2.4. The light-curve started to flatten off after about a week indicating the presence of an underlying extended object. This object was detected in a deep image obtained one month after the GRB at R=23.87+-0.15 and consists of several compact knots within about 5 arcsec. One of the knots is spatially coincident with the position of the OT and hence most likely belongs to the host galaxy. Higher resolution imaging is needed to resolve whether all the compact knots belong to the host galaxy or to several independent objects. In a separate paper we present a discussion of the optical spectrum of the OT, and its inferred redshift (Moller et al. in prep.).
We present the optical discovery and sub-arcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton to ~19 d reveal a single power law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is dark, with a rest-frame extinction of A_V~2.5 mag (at z~1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N_H~2x10^22 cm^-2, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at 0.9-11 d reveal a constant 5.8 GHz flux density and an optically-thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultra-luminous infrared galaxy (ULIRG) Arp 220 at z~1.3, with a resulting star formation rate of ~300 Msun/yr. The inferred extinction and small projected offset (2.2+/-1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of ~10^-3 cm^-3 an isotropic-equivalent energy scale of E_gamma,iso ~ E_K,iso ~ 7x10^51 erg, and a jet opening angle of >8 deg. The expected fraction of luminous infrared galaxies in the short GRB host sample is ~0.01-0.3 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of 2 events in about 25 hosts (GRBs 120804A and 100206A), provides additional support to our previous conclusion that short GRBs track both stellar mass and star formation activity.
Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimeter observations from the literature to perform broadband modeling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broadband modeling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modeling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope, and Hubble Space Telescope (HST), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.
Long gamma-ray bursts give us the chance to study both their extreme physics and the star-forming galaxies in which they form. GRB 100418A, at a z = 0.6239, had a bright optical and radio afterglow, and a luminous star-forming host galaxy. This allowed us to study the radiation of the explosion as well as the interstellar medium of the host both in absorption and emission. We collected photometric data from radio to X-ray wavelengths to study the evolution of the afterglow and the contribution of a possible supernova and three X-shooter spectra obtained during the first 60 hr. The light curve shows a very fast optical rebrightening, with an amplitude of 3 magnitudes, starting 2.4 hr after the GRB onset. This cannot be explained by a standard external shock model and requires other contributions, such as late central-engine activity. Two weeks after the burst we detect an excess in the light curve consistent with a SN with peak absolute magnitude M_V = -18.5 mag, among the faintest GRB-SNe detected to date. The host galaxy shows two components in emission, with velocities differing by 130 km s^-1, but otherwise having similar properties. While some absorption and emission components coincide, the absorbing gas spans much higher velocities, indicating the presence of gas beyond the star-forming regions. The host has a star-formation rate of 12.2 M_sol yr^-1, a metallicity of 12 + log(O/H) = 8.55 and a mass of 1.6x10^9 M_sol. GRB 100418A is a member of a class of afterglow light curves which show a steep rebrightening in the optical during the first day, which cannot be explained by traditional models. Its very faint associated SN shows that GRB-SNe can have a larger dispersion in luminosities than previously seen. Furthermore, we have obtained a complete view of the host of GRB 100418A owing to its spectrum, which contains a remarkable number of both emission and absorption lines.
We present the discovery of short GRB 080905A, its optical afterglow and host galaxy. Initially discovered by Swift, our deep optical observations enabled the identification of a faint optical afterglow, and subsequently a face-on spiral host galaxy underlying the GRB position, with a chance alignment probability of <1%. There is no supernova component present in the afterglow to deep limits. Spectroscopy of the galaxy provides a redshift of z=0.1218, the lowest redshift yet observed for a short GRB. The GRB lies offset from the host galaxy centre by ~18.5 kpc, in the northern spiral arm which exhibits an older stellar population than the southern arm. No emission lines are visible directly under the burst position, implying little ongoing star formation at the burst location. These properties would naturally be explained were the progenitor of GRB 080905A a compact binary merger.