Do you want to publish a course? Click here

Measuring Extinction Curves of Lensing Galaxies

338   0   0.0 ( 0 )
 Added by Geoffrey Clayton
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and produces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This lens difference curve does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxys dust contained in the lens difference curves.



rate research

Read More

392 - P.Schady , T.Dwelly , M.J.Page 2011
The composition and amount of interstellar dust within gamma-ray burst (GRB) host galaxies is of key importance when addressing selection effects in the GRB redshift distribution, and when studying the properties of their host galaxies. As well as the implications for GRB research, probing the dust within the high-z hosts of GRBs also contributes to our understanding of the conditions of the interstellar medium and star-formation in the distant Universe. Nevertheless, the physical properties of dust within GRB host galaxies continues to be a highly contended issue. In this paper we explore the mean extinction properties of dust within the host galaxies of a sample of 17 GRBs with total host galaxy visual extinction Av<1 (<Av>=0.4), covering a redshift range z=0.7-3.1. We find the average host extinction curve to have an ultraviolet slope comparable to that of the LMC, but with little evidence of a 2175Angs dust extinction feature as observed along Milky Way and LMC sightlines. We cannot at present rule out the presence of a 2175Angs feature, and both the standard SMC and LMC extinction curves also provide good fits to our data. However, we can reject an extinction curve that has a UV slope as flat as the mean Milky Way extinction curve, whilst also having a 2175Angs feature as prominent as seen in the mean Milky Way extinction curve. This is in contrast to the clear detection of a 2175Angs bump and the flatter extinction curves of some more heavily extinguished GRBs (Av>1), which may be indicative of there being a dependence between dust abundance and the wavelength dependence of dust extinction, as has been previously speculated.
Dust grains can be efficiently accelerated and shattered in warm ionized medium (WIM) because of the turbulent motion. This effect is enhanced in starburst galaxies, where gas is ionized and turbulence is sustained by massive stars. Moreover, dust production by Type II supernovae (SNe II) can be efficient in starburst galaxies. In this paper, we examine the effect of shattering in WIM on the dust grains produced by SNe II. We find that although the grains ejected from SNe II are expected to be biased to large sizes ($aga 0.1 micron$, where $a$ is the grain radius) because of the shock destruction in supernova remnants, the shattering in WIM is efficient enough in $sim 5$ Myr to produce small grains if the metallicity is nearly solar or more. The production of small grains by shattering steepens the extinction curve. Thus, steepening of extinction curves by shattering should always be taken into account for the system where the metallicity is solar and the starburst age is typically larger than 5 Myr. These conditions may be satisfied not only in nearby starbursts but also in high redshift ($z>5$) quasars.
63 - E.E. Falco 1999
We determine 37 differential extinctions in 23 gravitational lens galaxies over the range 0 < z_l < 1. Only 7 of the 23 systems have spectral differences consistent with no differential extinction. The median differential extinction for the optically-selected (radio-selected) subsample is E(B-V)=0.04 (0.06) mag. The extinction is patchy and shows no correlation with impact parameter. The median total extinction of the bluest images is E(B-V)=0.08 mag, although the total extinction distribution is dominated by the uncertainties in the intrinsic colors of quasars. The directly measured extinction distributions are consistent with the mean extinction estimated by comparing the statistics of quasar and radio lens surveys, thereby confirming the need for extinction corrections when using the statistics of lensed quasars to estimate the cosmological model. A disjoint subsample of two face-on, radio-selected spiral lenses shows both high differential and total extinctions, but standard dust-to-gas ratios combined with the observed molecular gas column densities overpredict the amount of extinction by factors of 2-5. For several systems we can estimate the extinction law, ranging from R_V=1.5+/-0.2 for a z_l=0.96 elliptical, to R_V=7.2+/-0.1 for a z_l=0.68 spiral. For the four radio lenses where we can construct non-parametric extinction curves we find no evidence for gray dust over the IR-UV wavelength range. The dust can be used to estimate lens redshifts with reasonable accuracy, although we sometimes find two degenerate redshift solutions.
We calculate the net extinction of galactic light as a function of wavelength, inclination, central optical depth, and morphology for simple galactic geometries using the Hyperion radiative transfer code. Compared to previous, similar works we tabulate extinction over a much broader range of galactic properties, and using a much finer grid in the model parameters. We expect these results to be useful for constructing dust-extinguished spectra and luminosities of model galaxies and, therefore, for synthetic survey building. Results are made available as an HDF5 file at https://doi.org/10.5281/zenodo.1442826
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا