Do you want to publish a course? Click here

Massive elliptical galaxies in X-rays: the role of late gas accretion

72   0   0.0 ( 0 )
 Added by Antonio Pipino
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new chemical evolution model meant to be a first step in the self-consistent study of both optical and X-ray properties of elliptical galaxies. Detailed cooling and heating processes in the interstellar medium are taken into account using a mono-phase one-zone treatment which allows a more reliable modelling of the galactic wind regime with respect to previous work. The model successfully reproduces simultaneously the mass-metallicity, colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. We found that a late secondary accretion of gas from the environment plays a fundamental role in driving the L_X - L_B and L_X - T relations and can explain their large observational scatter. The iron discrepancy, namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, still persists. On the other hand, we predict [O/Fe] in the ISM which is in good agreement with the most recent observations. We suggest possible mechanisms acting on a galactic scale which may solve the iron discrepancy. In particular, mixing of gas driven by AGNs may preserve the gas mass (and thus the X-ray luminosity) while diluting the iron abundance. New predictions for the amounts of iron, oxygen and energy ejected into the intracluster medium (ICM) are presented and we conclude that Type Ia supernovae (SNe Ia) play a fundamental role in the ICM enrichment. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity.



rate research

Read More

Four quiescent elliptical galaxies were imaged with the NRAO VLA at 8.5 GHz. Within the context of canonical advection-dominated accretion flows (ADAFs), these VLA images plus published black hole masses constrain the accretion rates to be $ <1.6times10^{-4}$, $ <3.6times10^{-4}$, $le7.8times10^{-4}$, and $le7.4times10^{-4}$ of the Eddington rates. These ADAF accretion rates derived at 8.5 GHz have important implications for the levels of soft and hard X-rays expected from these quiescent galaxies.
135 - A. Georgakakis 2001
We explore the evolution of the cold gas (molecular and neutral hydrogen) of elliptical galaxies and merger remnants ordered into a time sequence on the basis of spectroscopic age estimates. We find that the fraction of cold gas in early merger remnants decreases significantly for ~1-2 Gyr, but subsequent evolution toward evolved elliptical systems sees very little change. This trend can be attributed to an initial gas depletion by strong star-formation which subsequently declines to quiescent rates. This explanation is consistent with the merger picture for the formation of elliptical galaxies. We also explore the relation between HI-to-H2 mass ratio and spectroscopic galaxy age, but find no evidence for a statistically significant trend. This suggests little net HI to H2 conversion for the systems in the present sample.
We present observations in CO(3-2) that, combined with previous observations in CO(2-1), constrain the physical properties of the filamentary molecular gas in the central $sim$6.5 kpc of NGC 1275, the central giant elliptical galaxy of the Perseus cluster. We find this molecular gas to have a temperature $gtrsim 20$ K and a density $sim$$10^2$-$10^4 {rm cm^{-3}}$, typically warmer and denser than the bulk of Giant Molecular Clouds (GMCs) in the Galaxy. Bathed in the harsh radiation and particle field of the surrounding intracluster X-ray gas, the molecular gas likely has a much higher ionization fraction than that of GMCs. For an ionization fraction of $sim$$10^{-4}$, similar to that of Galactic diffuse ($lesssim 250 {rm cm^{-3}}$) partially-molecular clouds that emit in HCN(1-0) and HCO$^+$(1-0), we show that the same gas traced in CO can produce the previously reported emissions in HCN(3-2), HCO$^+$(3-2), and CN(2-1) from NGC 1275; the dominant source of excitation for all the latter molecules is collisions with electrons. To prevent collapse, as evidenced by the lack of star formation in the molecular filaments, they must consist of thin strands that have cross-sectional radii $lesssim$0.2-2 pc if supported solely by thermal gas pressure; larger radii are permissible if turbulence or poloidal magnetic fields provide additional pressure support. We point out that the conditions required to relate CO luminosities to molecular gas masses in our Galaxy are unlikely to apply in cluster central elliptical galaxies. Rather than being virialized structures analogous to GMCs, we propose that the molecular gas in NGC 1275 comprises pressure-confined structures created by turbulent flows.
191 - Fakhri S. Zahedy 2020
We report the first detection of multiphase gas within a quiescent galaxy beyond $zapprox0$. The observations use the brighter image of doubly lensed QSO HE 0047$-$1756 to probe the ISM of the massive ($M_{rm star}approx 10^{11} mathrm{M_odot}$) elliptical lens galaxy at $z_mathrm{gal}=0.408$. Using Hubble Space Telescopes Cosmic Origins Spectrograph (COS), we obtain a medium-resolution FUV spectrum of the lensed QSO and identify numerous absorption features from $mathrm{H_2}$ in the lens ISM at projected distance $d=4.6$ kpc. The $mathrm{H_2}$ column density is $log N(mathrm{H_2})/mathrm{cm^{-2}}=17.8^{+0.1}_{-0.3}$ with a molecular gas fraction of $f_mathrm{H_2}=2-5%$, roughly consistent with some local quiescent galaxies. The new COS spectrum also reveals kinematically complex absorption features from highly ionized species O VI and N V with column densities log $N(mathrm{O VI})/mathrm{cm^{-2}} =15.2pm0.1$ and log $N(mathrm{N V})/mathrm{cm^{-2}} =14.6pm0.1$, among the highest known in external galaxies. Assuming the high-ionization absorption features originate in a transient warm ($Tsim10^5,$K) phase undergoing radiative cooling from a hot halo surrounding the galaxy, we infer a mass accretion rate of $sim 0.5-1.5,mathrm{M_odot,yr^{-1}}$. The lack of star formation in the lens suggests the bulk of this flow is returned to the hot halo, implying a heating rate of $sim10^{48},mathrm{erg,yr^{-1}}$. Continuous heating from evolved stellar populations (primarily SNe Ia but also winds from AGB stars) may suffice to prevent a large accumulation of cold gas in the ISM, even in the absence of strong feedback from an active nucleus.
In this letter we construct a large sample of early-type galaxies with measured gas-phase metallicities from the Sloan Digital Sky Survey and Galaxy Zoo in order to investigate the origin of the gas that fuels their residual star formation. We use this sample to show that star forming elliptical galaxies have a substantially different gas-phase metallicity distribution from spiral galaxies, with ~7.4% having a very low gas-phase metallicity for their mass. These systems typically have fewer metals in the gas phase than they do in their stellar photospheres, which strongly suggests that the material fuelling their recent star formation was accreted from an external source. We use a chemical evolution model to show that the enrichment timescale for low-metallicity gas is very short, and thus that cosmological accretion and minor mergers are likely to supply the gas in >37% of star-forming ETGs, in good agreement with estimates derived from other independent techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا