No Arabic abstract
We report the first detection of multiphase gas within a quiescent galaxy beyond $zapprox0$. The observations use the brighter image of doubly lensed QSO HE 0047$-$1756 to probe the ISM of the massive ($M_{rm star}approx 10^{11} mathrm{M_odot}$) elliptical lens galaxy at $z_mathrm{gal}=0.408$. Using Hubble Space Telescopes Cosmic Origins Spectrograph (COS), we obtain a medium-resolution FUV spectrum of the lensed QSO and identify numerous absorption features from $mathrm{H_2}$ in the lens ISM at projected distance $d=4.6$ kpc. The $mathrm{H_2}$ column density is $log N(mathrm{H_2})/mathrm{cm^{-2}}=17.8^{+0.1}_{-0.3}$ with a molecular gas fraction of $f_mathrm{H_2}=2-5%$, roughly consistent with some local quiescent galaxies. The new COS spectrum also reveals kinematically complex absorption features from highly ionized species O VI and N V with column densities log $N(mathrm{O VI})/mathrm{cm^{-2}} =15.2pm0.1$ and log $N(mathrm{N V})/mathrm{cm^{-2}} =14.6pm0.1$, among the highest known in external galaxies. Assuming the high-ionization absorption features originate in a transient warm ($Tsim10^5,$K) phase undergoing radiative cooling from a hot halo surrounding the galaxy, we infer a mass accretion rate of $sim 0.5-1.5,mathrm{M_odot,yr^{-1}}$. The lack of star formation in the lens suggests the bulk of this flow is returned to the hot halo, implying a heating rate of $sim10^{48},mathrm{erg,yr^{-1}}$. Continuous heating from evolved stellar populations (primarily SNe Ia but also winds from AGB stars) may suffice to prevent a large accumulation of cold gas in the ISM, even in the absence of strong feedback from an active nucleus.
We report the first detection of extended neutral hydrogen (HI) gas in the interstellar medium (ISM) of a massive elliptical galaxy beyond z~0. The observations utilize the doubly lensed images of QSO HE 0047-1756 at z_QSO = 1.676 as absorption-line probes of the ISM in the massive (M_star ~ 10^11 M_sun) elliptical lens at z = 0.408, detecting gas at projected distances of d = 3.3 and 4.6 kpc on opposite sides of the lens. Using the Space Telescope Imaging Spectrograph (STIS), we obtain UV absorption spectra of the lensed QSO and identify a prominent flux discontinuity and associated absorption features matching the Lyman series transitions at z = 0.408 in both sightlines. The HI column density is log N(HI) = 19.6-19.7 at both locations across the lens, comparable to what is seen in 21 cm images of nearby ellipticals. The HI gas kinematics are well-matched with the kinematics of the FeII absorption complex revealed in ground-based echelle data, displaying a large velocity shear of 360 km/s across the galaxy. We estimate an ISM Fe abundance of 0.3-0.4 solar at both locations. Including likely dust depletions increases the estimated Fe abundances to solar or supersolar, similar to those of the hot ISM and stars of nearby ellipticals. Assuming 100% covering fraction of this Fe-enriched gas,we infer a total Fe mass of M_cool(Fe)~(5-8)x10^4 M_sun in the cool ISM of the massive elliptical lens, which is no more than 5% of the total Fe mass observed in the hot ISM.
We present a new Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) absorption-line survey to study halo gas around 16 luminous red galaxies (LRGs) at z=0.21-0.55. The LRGs are selected uniformly with stellar mass Mstar>1e11 Msun and no prior knowledge of the presence/absence of any absorption features. Based on observations of the full Lyman series, we obtain accurate measurements of neutral hydrogen column density N(HI) and find that high-N(HI) gas is common in these massive quiescent halos with a median of <log N(HI)> = 16.6 at projected distances d<~160 kpc. We measure a mean covering fraction of optically-thick gas with log N(HI)>~17.2 of <kappa>LLS=0.44^{+0.12}_{-0.11} at d<~160 kpc and <kappa>LLS=0.71^{+0.11}_{-0.20} at d<~100 kpc. The line-of-sight velocity separations between the HI absorbing gas and LRGs are characterized by a mean and dispersion of <v_{gas-gal}>=29 km/s and sigma_v_{gas-gal}=171 km/s. Combining COS FUV and ground-based echelle spectra provides an expanded spectral coverage for multiple ionic transitions, from low-ionization MgII and SiII, to intermediate ionization SiIII and CIII, and to high-ionization OVI absorption lines. We find that intermediate ions probed by CIII and SiIII are the most prominent UV metal lines in LRG halos with a mean covering fraction of <kappa(CIII)>_{0.1}=0.75^{+0.08}_{-0.13} for W(977)>=0.1 Ang at d<160 kpc, comparable to what is seen for CIII in L* and sub-L* star-forming and red galaxies but exceeding MgII or OVI in quiescent halos. The COS-LRG survey shows that massive quiescent halos contain widespread chemically-enriched cool gas and that little distinction between LRG and star-forming halos is found in their HI and CIII content.
We study the mass-metallicity relation for 19 members of a spectroscopically-confirmed protocluster in the COSMOS field at $z=2.2$ (CC2.2), and compare it with that of 24 similarly selected field galaxies at the same redshift. Both samples are $rm Halpha$ emitting sources, chosen from the HiZELS narrow-band survey, with metallicities derived from $rm N2 (frac{rm [NII] lambda 6584}{rm H alpha})$ line ratio. For the mass-matched samples of protocluster and field galaxies, we find that protocluster galaxies with $10^{9.9} rm M_odot leq M_* leq 10^{10.9} rm M_odot$ are metal deficient by $0.10 pm 0.04$ dex ($2.5sigma$ significance) compared to their coeval field galaxies. This metal deficiency is absent for low mass galaxies, $rm M_* < 10^{9.9} rm M_odot$. Moreover, relying on both SED-derived and $rm {Halpha}$ (corrected for dust extinction based on $rm {M_*}$) SFRs, we find no strong environmental dependence of SFR-$rm {M_*}$ relation, however, we are not able to rule out the existence of small dependence due to inherent uncertainties in both SFR estimators. The existence of $2.5sigma$ significant metal deficiency for massive protocluster galaxies favors a model in which funneling of the primordial cold gas through filaments dilutes the metal content of protoclusters at high redshifts ($z gtrsim 2$). At these redshifts, gas reservoirs in filaments are dense enough to cool down rapidly and fall into the potential well of the protocluster to lower the gas-phase metallicity of galaxies. Moreover, part of this metal deficiency could be originated from galaxy interactions which are more prevalent in dense environments.
We present multi-sightline absorption spectroscopy of cool gas around three lensing galaxies at z=0.4-0.7. These lenses have half-light radii r_e=2.6-8 kpc and stellar masses of log M*/Ms=10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d=3-15 kpc (or d~1-2 r_e) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r~r_e and circumgalactic gas at larger radii r>>re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE0047-1756, and in one of the two sightlines near the double lens for HE1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of dv~300-600 km/s. The large ionic column densities, log N>14, observed in two components suggest that these may be Lyman limit or damped Lya absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform super solar Fe/Mg ratio with a scatter of <0.1 dex across the full dv range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r~r_e. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multi-sightline approach provide a powerful tool to resolve the origin of chemically-enriched cool gas in massive halos.
Gas outflows are believed to play a pivotal role in shaping galaxies, as they regulate both star formation and black hole growth. Despite their ubiquitous presence, the origin and the acceleration mechanism of such powerful and extended winds is not yet understood. Direct observations of the cold gas component in objects with detected outflows at other wavelengths are needed to assess the impact of the outflow on the host galaxy interstellar medium (ISM). We observed with the Plateau de Bure Interferometer an obscured quasar at z~1.5, XID2028, for which the presence of an ionised outflow has been unambiguously signalled by NIR spectroscopy. The detection of CO(3-2) emission in this source allows us to infer the molecular gas content and compare it to the ISM mass derived from the dust emission. We then analyze the results in the context of recent insights on scaling relations, which describe the gas content of the overall population of star-forming galaxies at a similar redshifts. The Star formation efficiency (~100) and gas mass (M_gas=2.1-9.5x10^{10} M_sun) inferred from the CO(3-2) line depend on the underlying assumptions on the excitation of the transition and the CO-to-H2 conversion factor. However, the combination of this information and the ISM mass estimated from the dust mass suggests that the ISM/gas content of XID2028 is significantly lower than expected for its observed M$_star$, sSFR and redshift, based on the most up-to-date calibrations (with gas fraction <20% and depletion time scale <340 Myr). Overall, the constraints we obtain from the far infrared and millimeter data suggest that we are observing QSO feedback able to remove the gas from the host