Do you want to publish a course? Click here

Development of a Si/CdTe semiconductor Compton telescope

381   0   0.0 ( 0 )
 Added by Takaaki Tanaka
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We are developing a Compton telescope based on high resolution Si and CdTe imaging devices in order to obtain a high sensitivity astrophysical observation in sub-MeV gamma-ray region. In this paper, recent results from the prototype Si/CdTe semiconductor Compton telescope are reported. The Compton telescope consists of a double-sided Si strip detector (DSSD) and CdTe pixel detectors, combined with low noise analog LSI, VA32TA. With this detector, we obtained Compton reconstructed images and spectra from line gamma-rays ranging from 81 keV up to 356 keV. The energy resolution is 3.8 keV and 7.9 keV at 122 keV and 356 keV, respectively, and the angular resolution is 9.9 degrees and 5.7 degrees at 122 keV and 356 keV, respectively.



rate research

Read More

The Soft Gamma-ray Detector (SGD), to be deployed onboard the {it ASTRO-H} satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600~keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8~cm$^2$ meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.
Gamma-ray polarization offers a unique probes into the geometry of the gamma-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649--0.701 (inner part) and 0.637--0.653 (outer part) at 122.2 keV and 0.610--0.651 (inner part) and 0.564--0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ~3%.
125 - Shin Watanabe 2015
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60--600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm x 12 cm x 12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0--2.0 keV (FWHM) at 60 keV and 1.6--2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, respectively, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.
A Compton camera is the most promising approach for gamma-ray detection in the energy region from several hundred keV to MeV, especially for application in high energy astrophysics. In order to obtain good angular resolution, semiconductor detectors such as silicon, germanium and cadmium telluride(CdTe) have several advantages over scintillation detectors, which have been used so far. Based on the recent advances of high resolution CdTe and silicon imaging detectors, we are working on a Si/CdTe Compton camera. We have developed 64-pixel CdTe detectors with a pixel size of 2mmx2mm and double-sided Si strip detectors(DSSDs) with a position resolution of 800 micron. As a prototype Si/CdTe Compton camera, we use a DSSD as a scatterer and two CdTe pixel detectors as an absorber. In order to verify its performance, we irradiate the camera with 100% linearly polarised 170keV gamma-rays and demonstrate the system works properly as a Compton camera. The resolution of the reconstructed scattering angle is 22 degrees(FWHM). Measurement of polarization is also reported. The polarimetric modulation factor is obtained to be 43%, which is consistent with the prediction of Monte Carlo simulations.
Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1--20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium Telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 degree C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا