No Arabic abstract
We compare the absolute visual magnitude of the majority of bright O stars in the sky as predicted from their spectral type with the absolute magnitude calculated from their apparent magnitude and the Hipparcos parallax. We find that many stars appear to be much fainter than expected, up to five magnitudes. We find no evidence for a correlation between magnitude differences and the stellar rotational velocity as suggested for OB stars by Lamers et al. (1997), whose small sample of stars is partly included in ours. Instead, by means of a simulation we show how these differences arise naturally from the large distances at which O stars are located, and the level of precision of the parallax measurements achieved by Hipparcos. Straightforwardly deriving a distance from the Hipparcos parallax yields reliable results for one or two O stars only. We discuss several types of bias reported in the literature in connection with parallax samples (Lutz-Kelker, Malmquist) and investigate how they affect the O star sample. In addition, we test three absolute magnitude calibrations from the literature (Schmidt-Kaler et al. 1982; Howarth & Prinja 1989; Vacca et al. 1996) and find that they are consistent with the Hipparcos measurements. Although O stars conform nicely to the simulation, we notice that some B stars in the sample of Lamers et al. (1997) have a magnitude difference larger than expected.
We investigate the properties of K0V stars with Hipparcos parallaxes and spectral types taken from the Michigan Spectral Survey. The sample of 200 objects allows the empirical investigation of the magnitude selection (Malmquist) bias, which appears clearly present. By selecting those objects that are not affected by bias, we find a mean absolute magnitude of Mv~5.7, a downward revision from 5.9 mag. listed in Schmidt-Kaler (1982). Some objects have absolute magnitudes far brighter than Mv~5.7, and it is suggested that these objects (~20% of the total sample) are K0IV stars which may have been mis-classified as a K0V star. The presence of the Malmquist bias in even this high quality sample suggests that no sample can be expected to be bias-free.
Hipparcos trigonometrical parallaxes of Mira-type variables have been combined with ground-based angular diameter measurements to derive linear diameters. Of eight stars with ground-based data, six have diameters indicating overtone pulsation whilst two, both with periods over 400 day, are pulsating in the fundamental. Hipparcos parallaxes of 11 Miras have been combined with extensive infrared photometry to determine the zero-point of the Mira period-luminosity relation. Adopting the relation at K (2.2 micron), since this is less likely to be subject to abundance effects than that at Mbol, leads to a distance modulus for the LMC of 18.6 mag with a uncertainty of slightly less than 0.2 mag. A brief discussion is given of the preliminary analysis of the parallaxes of a much larger sample of Miras. Some consideration is given to possible problems in interpreting the Hipparcos data which arise because of the physical characteristics of the Mira variables. Finally the apparent low-luminosity of the carbon Mira, R Lep, implied by the Hipparcos results leads to an interesting problem in AGB evolution.
Accurately determining the properties of stars is of prime importance for characterizing stellar populations in our Galaxy. The field of asteroseismology has been thought to be particularly successful in such an endeavor for stars in different evolutionary stages. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos parallaxes. Our distance determinations agree to better than 5%, while measurements of spectroscopic effective temperatures and interferometric radii also validate our results. We briefly discuss the potential of our technique for stellar population analysis and models of Galactic Chemical Evolution.
A summary is given of an analysis of the Hipparcos trigonometrical parallaxes and proper motions of classical Cepheids. It is possible for the first time to derive zero-points for the period-luminosity and period-luminosity-colour relations from parallaxes alone, avoiding the problems of less direct methods. The results imply an increase of 8 to 10 percent in the extragalactic distance scale based on Cepheids. The proper motions are used to derive the constants of galactic rotation. Comparison with radial velocity data leads to a confirmation of the Cepheid distance scale derived from the parallaxes and indicates a kinematic distance to the galactic centre of 8.5 +/- 0.5 kpc. From the new Cepheid distances to the LMC and M31, the absolute magnitude of RR Lyrae variables in metal-poor globular clusters is derived. Applying this to data on metal-poor clusters in our own Galaxy leads to an age of about 11 Gyr for these clusters, considerably less than previously thought. Other evidence from Hipparcos on these matters is briefly reviewed and it is suggested that the Cepheid results currently provide the most reliable scale on which to base distances and ages.