The goal of the Orbiting Wide-field Light-collectors (OWL) mission is to study the origin and physics of the highest energy particles known in nature, the ultrahigh energy cosmic rays (UHECRs). The OWL mission consists of telescopes with UV sensitive cameras on two satellites operating in tandem to view in stereo the development of the giant particle showers induced in the Earths atmosphere by UHECRs. This paper discusses the characteristics of the OWL mission.
Graphical User Interface (GUI) provides a visual bridge between a software application and end users, through which they can interact with each other. With the development of technology and aesthetics, the visual effects of the GUI are more and more attracting. However, such GUI complexity posts a great challenge to the GUI implementation. According to our pilot study of crowdtesting bug reports, display issues such as text overlap, blurred screen, missing image always occur during GUI rendering on different devices due to the software or hardware compatibility. They negatively influence the app usability, resulting in poor user experience. To detect these issues, we propose a novel approach, OwlEye, based on deep learning for modelling visual information of the GUI screenshot. Therefore, OwlEye can detect GUIs with display issues and also locate the detailed region of the issue in the given GUI for guiding developers to fix the bug. We manually construct a large-scale labelled dataset with 4,470 GUI screenshots with UI display issues and develop a heuristics-based data augmentation method for boosting the performance of our OwlEye. The evaluation demonstrates that our OwlEye can achieve 85% precision and 84% recall in detecting UI display issues, and 90% accuracy in localizing these issues. We also evaluate OwlEye with popular Android apps on Google Play and F-droid, and successfully uncover 57 previously-undetected UI display issues with 26 of them being confirmed or fixed so far.
The apparent lack of suitable astrophysical sources for cosmic rays with E > 10^{19.7} eV (UHECRs) is the GZK Paradox. We argue that whatever mechanism produces them must also account for events down to ~10^{18.7} eV, including their isotropy and spectral smoothness. This rules out galactic sources, distributed sources such as topological defects, and Gamma Ray Bursts (GRBs). We are lead to identify the powerful radio galaxy Cen A, at 3.4 Mpc, as the probable source of most UHECRs observed at Earth today, and to estimate the extragalactic magnetic field to be ~0.3 microG.
The ESA Gaia mission will provide a multi-epoch database for a billion of objects, including variable objects that comprise stars, active galactic nuclei and asteroids. We highlight a few of Gaias properties that will benefit the study of variable objects, and illustrate with two examples the work being done in the preparation of the data processing and object characterization. The first example relates to the analysis of the nearly simultaneous multi-band data of Gaia with the Principal Component Analysis techniques, and the second example concerns the classification of Gaia time series into variability types. The results of the ground-based processing of Gaias variable objects data will be made available to the scientific community through the intermediate and final ESA releases throughout the mission.
How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.
This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity dependent galaxy biases, the power-spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three dimensional Large Scale Structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z=1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.