No Arabic abstract
The ESA Gaia mission will provide a multi-epoch database for a billion of objects, including variable objects that comprise stars, active galactic nuclei and asteroids. We highlight a few of Gaias properties that will benefit the study of variable objects, and illustrate with two examples the work being done in the preparation of the data processing and object characterization. The first example relates to the analysis of the nearly simultaneous multi-band data of Gaia with the Principal Component Analysis techniques, and the second example concerns the classification of Gaia time series into variability types. The results of the ground-based processing of Gaias variable objects data will be made available to the scientific community through the intermediate and final ESA releases throughout the mission.
This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity dependent galaxy biases, the power-spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three dimensional Large Scale Structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z=1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.
The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes. Since 2003 it has been operating in the configuration of four 12 m telescopes complemented in 2012 by a much bigger 28 m telescope in the centre of the array. It is designed to detect very high energy (VHE) gamma-rays in the range of ~20 GeV to ~50 TeV. Over the past decade it performed extremely successful observations of the Galactic plane, which led to the discovery of about 70 sources amongst which the most numerous classes are pulsar wind nebulae, supernova remnants and binary systems. Recently H.E.S.S. also discovered the VHE emission from the Vela pulsar, which became the second pulsar detected at TeV energies after the Crab pulsar. An overview of the main H.E.S.S. discoveries in our Galaxy and their implications on the understanding of physical processes is discussed in this paper.
Gaia DR2 provides a unique all-sky catalogue of 550737 variable stars, of which 151761 are long-period variable (LPV) candidates with G variability amplitudes larger than 0.2 mag (5-95% quantile range). About one-fifth of the LPV candidates are Mira candidates, the majority of the rest are semi-regular variable candidates. For each source, G, BP , and RP photometric time-series are published, together with some LPV-specific attributes for the subset of 89617 candidates with periods in G longer than 60 days. We describe this first Gaia catalogue of LPV candidates, and present various validation checks. Various samples of LPVs were used to validate the catalogue: a sample of well-studied very bright LPVs with light curves from the AAVSO that are partly contemporaneous with Gaia light curves, a sample of Gaia LPV candidates with good parallaxes, the ASAS_SN catalogue of LPVs, and the OGLE catalogues of LPVs towards the Magellanic Clouds and the Galactic bulge. The analyses of these samples show a good agreement between Gaia DR2 and literature periods. The same is globally true for bolometric corrections of M-type stars. The main contaminant of our DR2 catalogue comes from young stellar objects (YSOs) in the solar vicinity (within ~1 kpc), although their number in the whole catalogue is only at the percent level. A cautionary note is provided about parallax-dependent LPV attributes published in the catalogue. This first Gaia catalogue of LPVs approximately doubles the number of known LPVs with amplitudes larger than 0.2 mag, despite the conservative candidate selection criteria that prioritise low contamination over high completeness, and despite the limited DR2 time coverage compared to the long periods characteristic of LPVs. It also contains a small set of YSO candidates, which offers the serendipitous opportunity to study these objects at an early stage of the Gaia data releases.
We present a comparison of the Gaia DR1 samples of pulsating variable stars - Cepheids and RR Lyrae type - with the OGLE Collection of Variable Stars aiming at the characterization of the Gaia mission performance in the stellar variability domain. Out of 575 Cepheids and 2322 RR Lyrae candidates from the Gaia DR1 samples located in the OGLE footprint in the sky, 559 Cepheids and 2302 RR Lyrae stars are genuine pulsators of these types. The number of misclassified stars is low indicating reliable performance of the Gaia data pipeline. The completeness of the Gaia DR1 samples of Cepheids and RR Lyrae stars is at the level of 60-75% as compared to the OGLE Collection dataset. This level of completeness is moderate and may limit the applicability of the Gaia data in many projects.
The core of the nebula surrounding Eta Carinae has recently been observed with VLT/NACO, VLTI/VINCI, VLTI/MIDI and VLTI/AMBER in order to spatially and spectrally constrain the warm dusty environment and the central object. Narrow-band images at 3.74 and 4.05 micron reveal the structured butterfly-shaped dusty environment close to the central star with an unprecedented spatial resolution of about 60 mas. VINCI has resolved the present-day stellar wind of Eta Carinae on a scale of several stellar radii owing to the spatial resolution of the order of 5 mas (11 AU). The VINCI observations show that the object is elongated with a de-projected axis ratio of approximately 1.5. Moreover the major axis is aligned with that of the large bipolar nebula that was ejected in the 19th century. Fringes have also been obtained in the Mid-IR with MIDI using baselines of 75m. A peak of correlated flux of 100 Jy is detected 0.3 south-east from the photocenter of the nebula at 8.7 micron is detected. This correlated flux is partly attributed to the central object but it is worth noting that at these wavelengths, virtually all the 0.5 x 0.5 central area can generate detectable fringes witnessing the large clumping of the dusty ejecta. These observations provide an upper limit for the SED of the central source from 3.8 to 13.5 micron and constrain some parameters of the stellar wind which can be compared to Hilliers model. Lastly, we present the great potential of the AMBER instrument to study the numerous near-IR emissive lines from the star and its close vicinity. In particular, we discuss its ability to detect and follow the faint companion.