Do you want to publish a course? Click here

The automated classification of astronomical lightcurves using Kohonen self-organising maps

61   0   0.0 ( 0 )
 Added by Peter J. Wheatley
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply the technique of self-organising maps (Kohonen 1990) to the automated classification of singly periodic astronomical lightcurves. We find that our maps readily distinguish between lightcurve types in both synthetic and real datasets, and that the resulting maps do not depend sensitively on the chosen learning parameters. Automated data analysis techniques are likely to be become increasingly important as the size of astronomical datasets continues to increase, particularly with the advent of ultra-wide-field survey telescopes such as WASP, RAPTOR and ASAS.



rate research

Read More

We exploit the spectral archive of the Sloan Digital Sky Survey (SDSS) Data Release 7 to select unusual quasar spectra. The selection method is based on a combination of the power of self-organising maps and the visual inspection of a huge number of spectra. Self-organising maps were applied to nearly 10^5 spectra classified as quasars by the SDSS pipeline. Particular attention was paid to minimise possible contamination by rare peculiar stellar spectral types. We present a catalogue of 1005 quasars with unusual spectra. This large sample provides a useful resource for both studying properties and relations of/between different types of unusual quasars and selecting particularly interesting objects. The spectra are grouped into six types. All these types turn out to be on average more luminous than comparison samples of normal quasars after a statistical correction is made for intrinsic reddening. Both the unusual broad absorption line (BAL) quasars and the strong iron emitters have significantly lower radio luminosities than normal quasars. We also confirm that strong BALs avoid the most radio-luminous quasars. Finally, we create a sample of quasars similar to the two mysterious objects discovered by Hall et al. (2002) and briefly discuss the quasar properties and possible explanations of their highly peculiar spectra. (Abstract modified to match the arXiv format)
Some argue that biologically inspired algorithms are the future of solving difficult problems in computer science. Others strongly believe that the future lies in the exploration of mathematical foundations of problems at hand. The field of computer security tends to accept the latter view as a more appropriate approach due to its more workable validation and verification possibilities. The lack of rigorous scientific practices prevalent in biologically inspired security research does not aid in presenting bio-inspired security approaches as a viable way of dealing with complex security problems. This chapter introduces a biologically inspired algorithm, called the Self Organising Map (SOM), that was developed by Teuvo Kohonen in 1981. Since the algorithms inception it has been scrutinised by the scientific community and analysed in more than 4000 research papers, many of which dealt with various computer security issues, from anomaly detection, analysis of executables all the way to wireless network monitoring. In this chapter a review of security related SOM research undertaken in the past is presented and analysed. The algorithms biological analogies are detailed and the authors view on the future possibilities of this successful bio-inspired approach are given. The SOM algorithms close relation to a number of vital functions of the human brain and the emergence of multi-core computer architectures are the two main reasons behind our assumption that the future of the SOM algorithm and its variations is promising, notably in the field of computer security.
Accurate photometric redshift calibration is central to the robustness of all cosmology constraints from cosmic shear surveys. Analyses of the KiDS re-weighted training samples from all overlapping spectroscopic surveys to provide a direct redshift calibration. Using self-organising maps (SOMs) we demonstrate that this spectroscopic compilation is sufficiently complete for KiDS, representing $99%$ of the effective 2D cosmic shear sample. We use the SOM to define a $100%$ represented `gold cosmic shear sample, per tomographic bin. Using mock simulations of KiDS and the spectroscopic training set, we estimate the uncertainty on the SOM redshift calibration, and find that photometric noise, sample variance, and spectroscopic selection effects (including redshift and magnitude incompleteness) induce a combined maximal scatter on the bias of the redshift distribution reconstruction ($Delta langle z rangle=langle z rangle_{rm est}-langle z rangle_{rm true}$) of $sigma_{Delta langle z rangle} leq 0.006$ in all tomographic bins. We show that the SOM calibration is unbiased in the cases of noiseless photometry and perfectly representative spectroscopic datasets, as expected from theory. The inclusion of both photometric noise and spectroscopic selection effects in our mock data introduces a maximal bias of $Delta langle z rangle =0.013pm0.006$, or $Delta langle z rangle leq 0.025$ at $97.5%$ confidence, once quality flags have been applied to the SOM. The method presented here represents a significant improvement over the previously adopted direct redshift calibration implementation for KiDS, owing to its diagnostic and quality assurance capabilities. The implementation of this method in future cosmic shear studies will allow better diagnosis, examination, and mitigation of systematic biases in photometric redshift calibration.
With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits.
In the new era of very large telescopes, where data is crucial to expand scientific knowledge, we have witnessed many deep learning applications for the automatic classification of lightcurves. Recurrent neural networks (RNNs) are one of the models used for these applications, and the LSTM unit stands out for being an excellent choice for the representation of long time series. In general, RNNs assume observations at discrete times, which may not suit the irregular sampling of lightcurves. A traditional technique to address irregular sequences consists of adding the sampling time to the networks input, but this is not guaranteed to capture sampling irregularities during training. Alternatively, the Phased LSTM unit has been created to address this problem by updating its state using the sampling times explicitly. In this work, we study the effectiveness of the LSTM and Phased LSTM based architectures for the classification of astronomical lightcurves. We use seven catalogs containing periodic and nonperiodic astronomical objects. Our findings show that LSTM outperformed PLSTM on 6/7 datasets. However, the combination of both units enhances the results in all datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا