No Arabic abstract
We exploit the spectral archive of the Sloan Digital Sky Survey (SDSS) Data Release 7 to select unusual quasar spectra. The selection method is based on a combination of the power of self-organising maps and the visual inspection of a huge number of spectra. Self-organising maps were applied to nearly 10^5 spectra classified as quasars by the SDSS pipeline. Particular attention was paid to minimise possible contamination by rare peculiar stellar spectral types. We present a catalogue of 1005 quasars with unusual spectra. This large sample provides a useful resource for both studying properties and relations of/between different types of unusual quasars and selecting particularly interesting objects. The spectra are grouped into six types. All these types turn out to be on average more luminous than comparison samples of normal quasars after a statistical correction is made for intrinsic reddening. Both the unusual broad absorption line (BAL) quasars and the strong iron emitters have significantly lower radio luminosities than normal quasars. We also confirm that strong BALs avoid the most radio-luminous quasars. Finally, we create a sample of quasars similar to the two mysterious objects discovered by Hall et al. (2002) and briefly discuss the quasar properties and possible explanations of their highly peculiar spectra. (Abstract modified to match the arXiv format)
We aim to create a large sample of local post-starburst (PSB) galaxies to study their characteristic properties, particularly morphological features indicative of gravitational distortions and indications for active galactic nuclei (AGNs). The selection is based on a huge Kohonen self-organising map (SOM) of about one million SDSS spectra. The SOM is made fully available for the astronomical community, in combination with an interactive user interface. We compiled a catalogue of 2665 PSB galaxies with redshifts z < 0.4. In the colour-mass diagram, the PSB sample is found to be clearly concentrated towards the region between the red and the blue cloud, in agreement with the idea that PSB galaxies represent the transitioning phase between actively and passively evolving galaxies. The relative frequency of morphologically distorted PSB galaxies is at least 57%, significantly higher than in a comparison sample. The search for AGNs based on conventional selection criteria in the radio and MIR results in a low AGN fraction of 2 - 3%. We confirm an MIR excess in the mean SED of the PSB galaxy sample that may indicate hidden AGNs, though other sources are also possible. (Abstract modified to match the arXiv format.)
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called changing-look quasars, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.
We investigate systematically the X-ray emission from type 1 quasars using a sample of 1825 Sloan Digital Sky Survey (SDSS) non-broad absorption line (non-BAL) quasars with Chandra archival observations. A significant correlation is found between the X-ray-to-optical power-law slope parameter ($alpha_{rm OX}$) and the 2500 $r{A}$ monochromatic luminosity ($L_{rm 2500~r{A}}$), and the X-ray weakness of a quasar is assessed via the deviation of its $alpha_{rm OX}$ value from that expected from this relation. We demonstrate the existence of a population of non-BAL X-ray weak quasars, and the fractions of quasars that are X-ray weak by factors of $ge6$ and $ge10$ are $5.8pm0.7%$ and $2.7pm0.5%$, respectively. We classify the X-ray weak quasars (X-ray weak by factors of $ge6$) into three categories based on their optical spectral features: weak emission-line quasars (WLQs; CIV REW $<16~r{A}$), red quasars ($Delta(g-i)>0.2$), and unclassified X-ray weak quasars. The X-ray weak fraction of $35_{- 9}^{+12}%$ within the WLQ population is significantly higher than that within non-WLQs, confirming previous findings that WLQs represent one population of X-ray weak quasars. The X-ray weak fraction of $13_{- 3}^{+ 5}%$ within the red quasar population is also considerably higher than that within the normal quasar population. The unclassified X-ray weak quasars do not have unusual optical spectral features, and their X-ray weakness may be mainly related to quasar X-ray variability.
We present measurements of the spectral properties for a total of 526,265 quasars, out of which 63% have continuum S/N$>3$ pixel$^{-1}$, selected from the fourteenth data release of the Sloan Digital Sky Survey (SDSS-DR14) quasar catalog. We performed a careful and homogeneous analysis of the SDSS spectra of these sources, to estimate the continuum and line properties of several emission lines such as H${alpha}$, H${beta}$, H${gamma}$, Mg textsc{ii}, C textsc{iii]}, C textsc{iv} and Ly${alpha}$. From the derived emission line parameters, we estimated single-epoch virial black hole masses ($M_{mathrm{BH}}$) for the sample using H${beta}$, Mg textsc{ii} and C textsc{iv} emission lines. The sample covers a wide range in bolometric luminosity ($log L_{mathrm{bol}}$; erg s$^{-1}$) between 44.4 and 47.3 and $log M_{mathrm{BH}}$ between 7.1 and 9.9 $M_{odot}$. Using the ratio of $L_{mathrm{bol}}$ to the Eddington luminosity as a measure of the accretion rate, the logarithm of the accretion rate is found to be in the range between $-$2.06 and 0.43. We performed several correlation analyses between different emission line parameters and found them to match with that known earlier using smaller samples. We noticed that strong Fe textsc{ii} sources with large Balmer line width, and highly accreting sources with large $M_{mathrm{BH}}$ are rare in our sample. We make available online an extended and complete catalog that contains various spectral properties of 526,265 quasars derived in this work along with other properties culled from the SDSS-DR14 quasar catalog.
We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey (SDSS), selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 on either side of a galaxy, has source and lens redshifts $z_s = 1.54$ and $z_l = 0.343$. The AO-assisted images of J2211+1929 show two point sources separated by 1.04, corresponding to the same quasar at $z_s = 1.07,$ besides the lens galaxy and Einstein ring. Images of J2257+2349 show two point sources separated by 1.67 on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at redshift $z_s = 2.10$. In total, the two selection techniques identified 309 lens candidates, including 47 known lenses, and 6 previously ruled out candidates. 55 of the remaining candidates were observed using NIRC2 and ESI at Keck Observatory, EFOSC2 at the ESO-NTT (La Silla), and SAM and the Goodman spectrograph at SOAR. Of the candidates observed, 3 were confirmed as lenses, 36 were ruled out, and 16 remain inconclusive. Taking into account that we recovered known lenses, this gives us a success rate of at least 50/309 (16%). This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars. Developing and refining these techniques is essential for efficient identification of these rare lenses in ongoing and future photometric surveys.