Do you want to publish a course? Click here

IRS observations of the LMC planetary nebula SMP83

53   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first observations of the infrared spectrum of the LMC planetary nebula SMP83 as observed by the recently launched Spitzer Space Telescope are presented. The high resolution R~600 spectrum shows strong emission lines but no significant continuum. The infrared fine structure lines are used, together with published optical spectra, to derive the electron temperature of the ionized gas for several ions. A correlation between the electron temperature with ionization potential is found. Ionic abundances for the observed infrared ions have been derived and the total neon and sulfur abundances have been determined. These abundances are compared to average LMC abundances of HII regions to better understand the chemical evolution of these elements. The nature of the progenitor star is also discussed.



rate research

Read More

The ACIS-S camera on board the Chandra X-ray Observatory has been used to discover a hot bubble in the planetary nebula (PN) IC4593, the most distant PN detected by Chandra so far. The data are used to study the distribution of the X-ray-emitting gas in IC 4593 and to estimate its physical properties. The hot bubble has a radius of ~2$^{primeprime}$ and is found to be confined inside the optically-bright innermost cavity of IC 4593. The X-ray emission is mostly consistent with that of an optically-thin plasma with temperature $kTapprox0.15$ keV (or $T_mathrm{X}approx1.7times10^{6}$ K), electron density $n_mathrm{e}approx15$ cm$^{-3}$, and intrinsic X-ray luminosity in the 0.3-1.5 keV energy range $L_mathrm{X}=3.4times10^{30}$ erg s$^{-1}$. A careful analysis of the distribution of hard ($E>$0.8 keV) photons in IC 4593 suggests the presence of X-ray emission from a point source likely associated with its central star (CSPN). If this were the case, its estimated X-ray luminosity would be $L_mathrm{X,CSPN}=7times10^{29}$ erg s$^{-1}$, fulfilling the log$(L_mathrm{X,CSPN}/L_mathrm{bol})approx-7$ relation for self-shocking winds in hot stars. The X-ray detection of the CSPN helps explain the presence of high-ionisation species detected in the UV spectra as predicted by stellar atmosphere models.
SMP LMC 88 is one of the planetary nebulae (PN) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083A. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the the orbital variability of Galactic D-type SySt with its low amplitude and sinusoidal lightcurve shape. The SySt classification is also supported by the He I diagnostic diagram.
The radio emission from the youngest known Planetary nebula, SAO244567, has been mapped at 1384, 2368, 4800, 8640, 16832 and 18752 MHz by using the Australian Telescope Compact Array (ATCA). These observations constitute the first detailed radio study of this very interesting object, as they allow us to obtain the overall radio morphology of the source and to compute, for the first time, the radio spectrum up to millimetre range. Radio emission is consistent with free-free from a wind-like shell, which is also the region where most of the [OIII] comes from as revealed by HST images. Physical parameters of the radio nebula and of the central star were derived, all consistent with SAO 244567 being a very young Planetary Nebula still embedded in the dusty remnant of the AGB phase. The optically thin radio flux density appear to decrease when compared to data from the literature. Even very appealing, the variability of the radio emission, probably related to the evolution of the central object, needs further investigations.
We report on a global CCD time-series photometric campaign to decode the pulsations of the nucleus of the planetary nebula NGC1501. The star is hot and hydrogen-deficient, similar to the pre-white-dwarf PG 1159 stars. NGC1501 shows pulsational brightness variations of a few percent with periods ranging from 19 to 87 minutes. The variations are very complex, suggesting a pulsation spectrum that requires a long unbroken time series to resolve. Our CCD photometry of the star covers a two-week period in 1991 November, and used a global network of observatories. We obtained nearly continuous coverage over an interval of one week in the middle of the run. We have identified 10 pulsation periods, ranging from 5235 s down to 1154 s. We find strong evidence that the modes are indeed nonradial g-modes. The ratios of the frequencies of the largest-amplitude modes agree with those expected for modes that are trapped by a density discontinuity in the outer layers. We offer a model for the pulsation spectrum that includes a common period spacing of 22.3 s and a rotation period of 1.17 days; the period spacing allows us to assign a seismological mass of 0.55+/-0.03 Msun.
83 - Robin Ciardullo 2004
We report the results of a photometric and spectroscopic survey for planetary nebulae (PNe) in the Local Group spiral galaxy M33. We use our sample of 152 PNe to derive an [O III] planetary nebula luminosity function (PNLF) distance of (m-M)_0 = 24.86^+0.07-0.11 (0.94^+0.03-0.05 Mpc). Although this value is ~ 15% larger than the galaxys Cepheid distance, the discrepancy likely arises from differing assumptions about the systems internal extinction. Our photometry (which extends >3 mag down the PNLF), also reveals that the faint-end of M33s PN luminosity function is non-monotonic, with an inflection point ~2 mag below the PNLF cutoff. We argue that this feature is due to the galaxys large population of high core-mass planetaries, and that its amplitude may eventually be useful as a diagnostic for studies of stellar populations. Fiber-coupled spectroscopy of 140 of the PN candidates confirms that M33s PN population rotates along with the old disk, with a small asymmetric drift of ~ 10km/s. Remarkably, the populations line-of-sight velocity dispersion varies little over ~4 optical disk scale lengths, with sigma_{rad}~20km/s. We show that this is due to a combination of factors, including a decline in the radial component of the velocity ellipsoid at small galactocentric radii, and a gradient in the ratio of the vertical to radial velocity dispersion. We use our data to show that the mass scale length of M33s disk is ~2.3 times larger than that of the systems IR luminosity and that the disks V-band mass-to-light ratio changes from M/L_V ~0.3 in the galaxys inner regions to M/L_V ~2.0 at ~9 kpc. Models in which the dark matter is distributed in the plane of the galaxy are excluded by our data. (abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا