No Arabic abstract
SMP LMC 88 is one of the planetary nebulae (PN) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083A. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the the orbital variability of Galactic D-type SySt with its low amplitude and sinusoidal lightcurve shape. The SySt classification is also supported by the He I diagnostic diagram.
EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near- (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope (HST) images to show that the compact nebula is a point-like source, located 0.16 (~118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I-band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral-energy distribution with four blackbodies (the WD, a ~1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time, and is surrounded by gas photoionized by UV radiation from the WD.
The first observations of the infrared spectrum of the LMC planetary nebula SMP83 as observed by the recently launched Spitzer Space Telescope are presented. The high resolution R~600 spectrum shows strong emission lines but no significant continuum. The infrared fine structure lines are used, together with published optical spectra, to derive the electron temperature of the ionized gas for several ions. A correlation between the electron temperature with ionization potential is found. Ionic abundances for the observed infrared ions have been derived and the total neon and sulfur abundances have been determined. These abundances are compared to average LMC abundances of HII regions to better understand the chemical evolution of these elements. The nature of the progenitor star is also discussed.
We present the first detailed spatio-kinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrowband imaging in the light of [NII], [OIII] and [SII], obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionisation structure of Abell 41. Longslit observations of the H-alpha and [NII] emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Martir Telescope. These spectra, combined with the narrowband imagery, were used to develop a spatio-kinematical model of [NII] emission from Abell 41. The best fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40kms at the waist. The symmetry axis of the model nebula is within 5$degr$ of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally.
Classical nova outburst has been suggested for a number of extragalactic symbiotic stars, but in none of the systems has it been proven. In this work we study the nature of one of these systems, LMC S154. We gathered archival photometric observations in order to determine the timescales and nature of variability in this system. Additionally we carried out photometric and spectroscopic monitoring of the system and fitted synthetic spectra to the observations. Carbon abundance in the photosphere of the red giant is significantly higher than that derived for the nebula, which confirms pollution of the circumbinary material by the ejecta from nova outburst. The photometric and spectroscopic data show that the system reached quiescence in 2009, which means that for the first time all of the phases of a nova outburst were observed in an extragalactic symbiotic star. The data indicate that most probably there were three outbursts observed in LMC S154, which would make this system a member of a rare class of symbiotic recurrent novae. The recurrent nature of the system is supported by the discovery of coronal lines in the spectra, which are observed only in symbiotic stars with massive white dwarfs and with short-recurrence-time outbursts. Gathered evidence is sufficient to classify LMC S154 as the first bona fide extragalactic symbiotic nova, which is likely a recurrent nova. It is also the first nova with a carbon-rich donor.
We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.