Do you want to publish a course? Click here

The Planetary Nebula System of M33

84   0   0.0 ( 0 )
 Added by Patrick Durrell
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of a photometric and spectroscopic survey for planetary nebulae (PNe) in the Local Group spiral galaxy M33. We use our sample of 152 PNe to derive an [O III] planetary nebula luminosity function (PNLF) distance of (m-M)_0 = 24.86^+0.07-0.11 (0.94^+0.03-0.05 Mpc). Although this value is ~ 15% larger than the galaxys Cepheid distance, the discrepancy likely arises from differing assumptions about the systems internal extinction. Our photometry (which extends >3 mag down the PNLF), also reveals that the faint-end of M33s PN luminosity function is non-monotonic, with an inflection point ~2 mag below the PNLF cutoff. We argue that this feature is due to the galaxys large population of high core-mass planetaries, and that its amplitude may eventually be useful as a diagnostic for studies of stellar populations. Fiber-coupled spectroscopy of 140 of the PN candidates confirms that M33s PN population rotates along with the old disk, with a small asymmetric drift of ~ 10km/s. Remarkably, the populations line-of-sight velocity dispersion varies little over ~4 optical disk scale lengths, with sigma_{rad}~20km/s. We show that this is due to a combination of factors, including a decline in the radial component of the velocity ellipsoid at small galactocentric radii, and a gradient in the ratio of the vertical to radial velocity dispersion. We use our data to show that the mass scale length of M33s disk is ~2.3 times larger than that of the systems IR luminosity and that the disks V-band mass-to-light ratio changes from M/L_V ~0.3 in the galaxys inner regions to M/L_V ~2.0 at ~9 kpc. Models in which the dark matter is distributed in the plane of the galaxy are excluded by our data. (abridged)

rate research

Read More

100 - L. Magrini 2003
Spectroscopic observations of 48 emission-line objects of M33 have been obtained with the multi-object, wide field, fibre spectrograph AF2/WYFFOS at the 4.2m WHT telescope (La Palma, Spain). Line intensities and logarithmic extinction, cbeta, are presented for 42 objects. Their location in the Sabbadin & DOdorico diagnostic diagram (Halpha/[SII] vs Hlapha/[NII]) suggests that >70% of the candidates are Planetary Nebulae (PNe). Chemical abundances and nebular physical parameters have been derived for the three of the six PNe where the 4363A [OIII] emission line was measurable. These are disc PNe, located within a galactocentric distance of 4.1 kpc, and, to date, they are the farthest PNe with a direct chemical abundance determination. No discrepancy in the Helium, Oxygen and Argon abundances has been found in comparison with corresponding abundances of PNe in our Galaxy. Only a lower limit to the sulphur abundance has been obtained since we could not detect any [SIII] line. N/H appears to be lower than the Galactic value; some possible explanations for this under-abundance are discussed.
Using spectroscopic data presented in Magrini et al. (2003), we have analyzed with the photoionization code CLOUDY 94.00 (Ferland et al. 1998) 11 Planetary Nebulae belonging to the spiral galaxy M 33. Central star temperatures and nebular parameters have been determined. In particular the chemical abundances of He/H, O/H, N/H, Ar/H, and S/H have been measured and compared with values obtained via the Ionization Correction Factors (ICFs) method, when available. Chemical abundance relationships have been investigated; in particular, a correlation between N/H and N/O similar to the Galactic one (Henry 1989), and a feeble anti-correlation between O/H and N/O have been found. A gradient in O/H across the disc of M~33 is indicatively consistent with the one found from HII regions in this galaxy (Vilchez et al 1988). Further studies in the more external parts of M~33 are however needed to ascertain this point. The present result shows that oxygen and helium abundances (with lower accuracy also nitrogen, argon and sulphur) can be actually estimated from the brightest PNe of a galaxy, even if the electron temperature cannot be measured. We also found that the oxygen abundance is quite independent of the absolute magnitude of the PN and consequently the brightest PNe are representative of the whole PN population. This represents an important tool to measure the metallicity of galaxies at the time of the formation of PNe progenitors.
The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitation nebula is in fact a small Stromgren sphere (HII region) in the interstellar medium around this star. We summarise the properties of the nebula and its ionizing star, and discuss its evolutionary status. We find no compelling evidence for close binarity, arguing that PHL 932 is an ordinary sdB star. We also find that the emission nebulae around the hot DO stars PG 0108+101 and PG 0109+111 are also Stromgren spheres in the ISM, and along with PHL 932, are probably associated with the same extensive region of high-latitude molecular gas in Pisces-Pegasus.
Planetary Nebulae (PNe) are amongst the most spectacular objects produced by stellar evolution, but the exact identity of their progenitors has never been established for a large and homogeneous observational sample. We investigate the relationship between PNe and their stellar progenitors in the Large Magellanic Cloud (LMC) through the statistical comparison between a highly complete spectroscopic catalog of PNe and the spatially resolved age distribution of the underlying stellar populations. We find that most PN progenitors in the LMC have main-sequence lifetimes in a narrow range between 5 and 8 Gyr, which corresponds to masses between 1.2 and 1.0 M$_{odot}$, and produce PNe that last $26^{+6}_{-7}$~kyr on average. We tentatively detect a second population of PN progenitors, with main-sequence lifetimes between 35 and 800~Myr, i.e., masses between 8.2 and 2.1 M$_{odot}$, and average PN lifetimes of $11^{+6}_{-7}$ kyr. These two distinct and disjoint populations of progenitors strongly suggest the existence of at least two physically distinct formation channels for PNe. Our determination of PN lifetimes and progenitor masses has implications for the understanding of PNe in the context of stellar evolution models, and for the role that rotation, magnetic fields, and binarity can play in the shaping of PN morphologies.
141 - K. B. Kwitter 2014
We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا