Do you want to publish a course? Click here

Seismology of the Accreting White Dwarf in GW Lib

56   0   0.0 ( 0 )
 Added by Dean M. Townsley
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a first analysis of the g-mode oscillation spectrum for the white dwarf (WD) primary of GW Lib, a faint cataclysmic variable (CV). Stable periodicities have been observed from this WD for a number of years, but their interpretation as stellar pulsations has been hampered by a lack of theoretical models appropriate to an accreting WD. Using the results of Townsley and Bildsten, we construct accreting models for the observed effective temperature and approximate mass of the WD in GW Lib. We compute g-mode frequencies for a range of accreted layer masses, Macc, and long term accretion rates, <Mdot>. If we assume that the observed oscillations are from l=1 g-modes, then the observed periods are matched when M ~= 1.02 Msun, Macc ~= 0.31 x 10^-4 Msun and <Mdot> ~= 7.3 x 10^-11 Msun/yr. Much more sensitive observations are needed to discover more modes, after which we will be able to more accurately measure these parameters and constrain or measure the WDs rotation rate.



rate research

Read More

Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of HST ultraviolet spectroscopy taken in 2002, 2010 and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in May~2013, we obtained new HST/COS ultraviolet observations that displayed unexpected behaviour: besides showing variability at ~275s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on a ~4.4h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ~30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star
189 - D. Nogami , K. Hiroi , Y. Suzuki 2008
We carried out intensive spectroscopic observations of two WZ Sge-type dwarf novae, GW Lib, and V455 And during their superoutbursts in 2007, at 6 observatories. The observations covered the whole of both superoutbursts from the very maximum to the fading tail. We found evidence of the winds having a speed of $sim$1000 km s$^{-1}$ which blew in GW Lib during the rising phase. The evolution of the hydrogen, helium, and carbon lines suggests flaring of the accretion disk and emergence of the temperature inversion layer on the disk.
XMM-Newton observations of the accreting, pulsating white dwarf in the quiescent dwarf nova GW Librae were conducted to determine if the non-radial pulsations present in previous UV and optical data affect the X-ray emission. The non-radial pulsations are evident in the simultaneous Optical Monitor data but are not detected in X-ray with an upper limit on the pulsation amplitude of 0.092 mags. The best fits to the X-ray spectrum are with a low temperature diffuse gas model or a multi-temperature cooling flow model, with a strong OVIII line, similar to other short period dwarf novae, but with a lower temperature range than evident in normal short period dwarf novae. The lack of pulsations and the spectrum likely indicate that the boundary layer does not extend to the surface of the white dwarf.
This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.
The ZZ Ceti star KUV 02464+3239 was observed over a whole season at the mountain station of Konkoly Observatory. A rigorous frequency analysis revealed 6 certain periods between 619 and 1250 seconds, with no shorter period modes present. We use the observed periods, published effective temperature and surface gravity, along with the model grid code of Bischoff-Kim, Montgomery and Winget (2008) to perform a seismological analysis. We find acceptable model fits with masses between 0.60 and 0.70 M_Sun. The hydrogen layer mass of the acceptable models are almost always between 10^-4 and 10^-6 M_*. In addition to our seismological results, we also show our analysis of individual light curve segments. Considering the non-sinusoidal shape of the light curve and the Fourier spectra of segments showing large amplitude variations, the importance of non-linear effects in the pulsation is clearly seen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا