Do you want to publish a course? Click here

Dissecting accretion and outflows in accreting white dwarf binaries

478   0   0.0 ( 0 )
 Added by Enrico Bozzo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of accreting white dwarfs. For a summary, we refer to the paper.



rate research

Read More

We explore the long-term evolution of mass-transferring white dwarf binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational wave astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the LISA sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ~$2700$ double white dwarfs will be observable by LISA with negative chirps less than $-0.1 yr^{-2}$. We also show that detections of mass-transferring double white dwarf systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.
65 - S. Scaringi 2017
White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15% of these binaries, the magnetic field of the white dwarf is strong enough ($geq 10^6$ Gauss) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as non-magnetic, since to date there has been no evidence that they have a dynamically significant magnetic field. Here we report an analysis of archival optical observations of the non-magnetic accreting white dwarf in the binary system MV Lyrae (hereafter MV Lyr), whose lightcurve displayed quasi-periodic bursts of $approx 30$ minutes duration every $approx 2$ hours. The observations indicate the presence of an unstable magnetically-regulated accretion mode, revealing the existence of magnetically gated accretion, where disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyr between $2 times 10^4 leq B leq 10^5$ Gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cysles have been identified.
We demonstrate a method to fully characterize mass-transferring double white dwarf (DWD) systems with a helium-rich (He) WD donor based on the mass--radius relationship for He WDs. Using a simulated Galactic population of DWDs, we show that donor and accretor masses can be inferred for up to $sim, 60$ systems observed by both Laser Interferometer Space Antenna (LISA) and Gaia. Half of these systems will have mass constraints $Delta,M_{rm{D}}lesssim0.2M_{odot}$ and $Delta,M_{rm{A}}lesssim2.3,M_{odot}$. We also show how the orbital frequency evolution due to astrophysical processes and gravitational radiation can be decoupled from the total orbital frequency evolution for up to $sim 50$ of these systems.
We study the effect of tidal forcing on gravitational wave signals from tidally relaxed white dwarf pairs in the LISA, DECIGO and BBO frequency band ($0.1-100,{rm mHz}$). We show that for stars not in hydrostatic equilibrium (in their own rotating frames), tidal forcing will result in energy and angular momentum exchange between the orbit and the stars, thereby deforming the orbit and producing gravitational wave power in harmonics not excited in perfectly circular synchronous binaries. This effect is not present in the usual orbit-averaged treatment of the equilibrium tide, and is analogous to transit timing variations in multiplanet systems. It should be present for all LISA white dwarf pairs since gravitational waves carry away angular momentum faster than tidal torques can act to synchronize the spins, and when mass transfer occurs as it does for at least eight LISA verification binaries. With the strain amplitudes of the excited harmonics depending directly on the density profiles of the stars, gravitational wave astronomy offers the possibility of studying the internal structure of white dwarfs, complimenting information obtained from asteroseismology of pulsating white dwarfs. Since the vast majority of white-dwarf pairs in this frequency band are expected to be in the quasi-circular state, we focus here on these binaries, providing general analytic expressions for the dependence of the induced eccentricity and strain amplitudes on the stellar apsidal motion constants and their radius and mass ratios. Tidal dissipation and gravitation wave damping will affect the results presented here and will be considered elsewhere.
126 - Iminhaji Ablimit 2019
Redbacks (RBs) and black widows (BWs) are two peculiar classes of eclipsing millisecond pulsars (MSPs). The accretion-induced collapse (AIC) of an oxygen/neon/magnesium composition white dwarf to a neutron star has been suggested as one possible formation pathway for those two classes of MSPs. However, it is difficult to produce all known MSPs with the traditional AIC scenario. In this study by using the MESA stellar evolution code, we investigate the detailed pre-AIC evolution of magnetized white dwarf binaries with the magnetic confinement model where the high magnetic field strength of the white dwarf can confine the accreted matter in the polar caps. We find that the initial donor mass and orbital periods in our model can be lower than that of previous traditional AIC models. We also present post-AIC evolution models to form RBs and BWs with and without the spin down luminosity evaporation of MSPs. Under the magnetic confinement model and evaporative winds (with corresponding angular momentum loss from the surface of the donor star), the companion masses and orbital periods of all known RBs can be covered and a number of binaries can evolve to become BWs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا