No Arabic abstract
Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of HST ultraviolet spectroscopy taken in 2002, 2010 and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in May~2013, we obtained new HST/COS ultraviolet observations that displayed unexpected behaviour: besides showing variability at ~275s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on a ~4.4h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ~30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star
We present a first analysis of the g-mode oscillation spectrum for the white dwarf (WD) primary of GW Lib, a faint cataclysmic variable (CV). Stable periodicities have been observed from this WD for a number of years, but their interpretation as stellar pulsations has been hampered by a lack of theoretical models appropriate to an accreting WD. Using the results of Townsley and Bildsten, we construct accreting models for the observed effective temperature and approximate mass of the WD in GW Lib. We compute g-mode frequencies for a range of accreted layer masses, Macc, and long term accretion rates, <Mdot>. If we assume that the observed oscillations are from l=1 g-modes, then the observed periods are matched when M ~= 1.02 Msun, Macc ~= 0.31 x 10^-4 Msun and <Mdot> ~= 7.3 x 10^-11 Msun/yr. Much more sensitive observations are needed to discover more modes, after which we will be able to more accurately measure these parameters and constrain or measure the WDs rotation rate.
White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15% of these binaries, the magnetic field of the white dwarf is strong enough ($geq 10^6$ Gauss) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as non-magnetic, since to date there has been no evidence that they have a dynamically significant magnetic field. Here we report an analysis of archival optical observations of the non-magnetic accreting white dwarf in the binary system MV Lyrae (hereafter MV Lyr), whose lightcurve displayed quasi-periodic bursts of $approx 30$ minutes duration every $approx 2$ hours. The observations indicate the presence of an unstable magnetically-regulated accretion mode, revealing the existence of magnetically gated accretion, where disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyr between $2 times 10^4 leq B leq 10^5$ Gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cysles have been identified.
We present optical high-speed photometry of three millisecond pulsars with low-mass ($< 0.3 M_{odot}$) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a $M_{star} = 0.16 - 0.19 M_{odot}$ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.
We present time-resolved optical and ultraviolet spectroscopy and photometry of V1460~Her, an eclipsing cataclysmic variable with a 4.99,h orbital period and an overluminous K5-type donor star. The optical spectra show emission lines from an accretion disc along with absorption lines from the donor. We use these to measure radial velocities, which, together with constraints upon the orbital inclination from photometry, imply masses of $M_1=0.869pm0.006,mathrm{M}_odot$ and $M_2=0.295pm0.004,mathrm{M}_odot$ for the white dwarf and the donor. The radius of the donor, $R_2=0.43pm0.002,mathrm{R}_odot$, is $approx 50$ per cent larger than expected given its mass, while its spectral type is much earlier than the M3.5 type that would be expected from a main sequence star with a similar mass. HST spectra show strong $mathrm{N{small V}}$ 1240 A emission but no $mathrm{C{small IV}}$ 1550 A emission, evidence for CNO-processed material. The donor is therefore a bloated, over-luminous remnant of a thermal-timescale stage of high mass transfer and has yet to re-establish thermal equilibrium. Remarkably, the HST ultraviolet data also show a strong 30 per cent peak-to-peak, $38.9,$s pulsation that we explain as being due to the spin of the white dwarf, potentially putting V1460 Her in a similar category to the propeller system AE Aqr in terms of its spin frequency and evolutionary path. AE Aqr also features a post-thermal timescale mass donor, and V1460 Her may therefore be its weak magnetic field analogue since the accretion disc is still present, with the white dwarf spin-up a result of a recent high accretion rate.
We carried out an international spectroscopic observation campaign of the dwarf nova GW Librae (GW Lib) during the 2007 superoutburst. Our observation period covered the rising phase of the superoutburst, maximum, slowly decaying phase (plateau), and long fading tail after the rapid decline from the plateau. The spectral features dramatically changed during the observations. In the rising phase, only absorption lines of H$alpha$, H$beta$, and H$gamma$ were present. Around the maximum, the spectrum showed singly-peaked emission lines of H$alpha$, He I 5876, He I 6678, He II 4686, and C III/N III as well as absorption lines of Balmer components and He I. These emission lines significantly weakened in the latter part of the plateau phase. In the fading tail, all the Balmer lines and He I 6678 were in emission, as observed in quiescence. We find that the center of the H$alpha$ emission component was mostly stable over the whole orbital phase, being consistent with the low inclination of the system. Comparing with the observational results of WZ Sge during the 2001 superoutburst, the same type of stars as GW Lib seen with a high inclination angle, we interpret that the change of the H$alpha$ profile before the fading tail phase is attributed to a photoionized region formed at the outer edge of the accretion disk, irradiated from the white dwarf and inner disk.