Do you want to publish a course? Click here

Chandra Observations of Radio-Loud Quasars at z > 4: X-rays from the Radio Beacons of the Early Universe

62   0   0.0 ( 0 )
 Added by Niel Brandt
 Publication date 2004
  fields Physics
and research's language is English
 Authors L.C. Bassett




Ask ChatGPT about the research

We present the results of Chandra observations of six radio-loud quasars (RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These observations cover a representative sample of RLQs with moderate radio-loudness (R ~ 40-400), filling the X-ray observational gap between optically selected RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the relationship between X-ray luminosity and radio-loudness for quasars at high redshift and constrain RLQ X-ray continuum emission and absorption. From a joint spectral fit of nine moderate-R RLQs observed by Chandra, we find tentative evidence for absorption above the Galactic N_H, with a best-fit neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2}, consistent with earlier claims of increased absorption toward high-redshift RLQs. We also search for evidence of an enhanced jet-linked component in the X-ray emission due to the increased energy density of the cosmic microwave background (CMB) at high redshift, but we find neither spatial detections of X-ray jets nor a significant enhancement in the X-ray emission relative to comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have basic X-ray properties consistent with comparable RLQs in the local universe, suggesting that the accretion/jet mechanisms of these objects are similar as well.



rate research

Read More

(Abridged) We present a systematic study of the X-ray and multiwavelength properties of a sample of 17 highly radio-loud quasars (HRLQs) at z > 4 with sensitive X-ray coverage from new Chandra and archival Chandra, XMM-Newton, and Swift observations. Eight of the new and archival observations are reported in this work for the first time. New Chandra observations of two moderately radio-loud and highly optically luminous quasars at z > 4 are also reported. Our HRLQ sample represents the top ~5% of radio-loud quasars in terms of radio loudness. We found that our HRLQs have an X-ray emission enhancement over HRLQs at lower redshifts (by a typical factor of ~3), and this effect, after controlling for several factors which may introduce biases, has been solidly estimated to be significant at the 3-4 sigma level. HRLQs at z=3-4 are also found to have a similar X-ray emission enhancement over z < 3 HRLQs, which supports further the robustness of our results. We discuss models for the X-ray enhancements origin including a fractional contribution from inverse Compton scattering of cosmic microwave background photons. No strong correlations are found between the relative X-ray brightness and optical/UV emission-line rest-frame equivalent widths (REWs) for radio-loud quasars. However, the line REWs are positively correlated with radio loudness, which suggests that relativistic jets make a negligible contribution to the optical/UV continua of these HRLQs (contrary to the case where the emission lines are diluted by the relativistically boosted continuum). Our HRLQs are generally consistent with the known anti-correlation between radio loudness and X-ray power-law photon index. We also found that the two moderately radio-loud quasars appear to have the hardest X-ray spectra among our objects, suggesting that intrinsic X-ray absorption (N_H~10^23 cm^-2) may be present.
Quasars at z>4 provide direct information on the first massive structures to form in the Universe. Recent ground-based optical surveys (e.g., the Sloan Digital Sky Survey) have discovered large numbers of high-redshift quasars, increasing the number of known quasars at z>4 to ~500. Most of these quasars are suitable for follow-up X-ray studies. Here we review X-ray studies of the highest redshift quasars, focusing on recent advances enabled largely by the capabilities of Chandra and XMM-Newton. Overall, analyses indicate that the X-ray emission and broad-band properties of high-redshift and local quasars are reasonably similar, once luminosity effects are taken into account. Thus, despite the strong changes in large-scale environment and quasar number density that have occurred from z~0-6, individual quasar X-ray emission regions appear to evolve relatively little.
Radio-loud Active Galactic Nuclei at z~2-4 are typically located in dense environments and their host galaxies are among the most massive systems at those redshifts, providing key insights for galaxy evolution. Finding radio-loud quasars at the highest accessible redshifts (z~6) is important to study their properties and environments at even earlier cosmic time. They would also serve as background sources for radio surveys intended to study the intergalactic medium beyond the epoch of reionization in HI 21 cm absorption. Currently, only five radio-loud ($R=f_{ u,5{rm GHz}}/f_{ u,4400AA}>10$) quasars are known at z~6. In this paper we search for 5.5 < z < 7.2 quasars by cross-matching the optical Pan-STARRS1 and radio FIRST surveys. The radio information allows identification of quasars missed by typical color-based selections. While we find no good 6.4 < z <7.2 quasar candidates at the sensitivities of these surveys, we discover two new radio-loud quasars at z~6. Furthermore, we identify two additional z~6 radio-loud quasars which were not previously known to be radio-loud, nearly doubling the current z~6 sample. We show the importance of having infrared photometry for z>5.5 quasars to robustly classify them as radio-quiet or radio-loud. Based on this, we reclassify the quasar J0203+0012 (z=5.72), previously considered radio-loud, to be radio-quiet. Using the available data in the literature, we constrain the radio-loud fraction of quasars at z~6, using the Kaplan--Meier estimator, to be $8.1^{+5.0}_{-3.2}%$. This result is consistent with there being no evolution of the radio-loud fraction with redshift, in contrast to what has been suggested by some studies at lower redshifts.
74 - Yali Shao , Jeff Wagg , Ran Wang 2020
We present Giant Metrewave Radio Telescope (GMRT) 323 MHz radio continuum observations toward 13 radio-loud quasars at $z>5$, sampling the low-frequency synchrotron emission from these objects. Among the 12 targets successfully observed, we detected 10 above $4sigma$ significance, while 2 remain undetected. All of the detected sources appear as point sources. Combined with previous radio continuum detections from the literature, 9 quasars have power-law spectral energy distributions throughout the radio range; for some the flux density drops with increasing frequency while it increases for others. Two of these sources appear to have spectral turnover. For the power-law-like sources, the power-law indices have a positive range between 0.18 and 0.67 and a negative values between $-0.90$ and $-0.27$. For the turnover sources, the radio peaks around $sim1$ and $sim10$ GHz in the rest frame, the optically thin indices are $-0.58$ and $-0.90$, and the optically thick indices are 0.50 and 1.20. A magnetic field and spectral age analysis of SDSS J114657.59+403708.6 at $z=5.01$ may indicate that the turnover is not caused by synchrotron self-absorption, but rather by free-free absorption by the high-density medium in the nuclear region. Alternatively, the apparent turnover may be an artifact of source variability. Finally, we calculated the radio loudness $R_{2500rm, AA}$ for our sample, which spans a very wide range from 12$^{+13}_{-13}$ to 4982$^{+279}_{-254}$.
We have carried out multicolour imaging of a complete sample of radio-loud quasars at 0.6 < z < 1.1 and find groups or clusters of galaxies in the fields of at least 8 and possibly 13 of the 21 sources. There is no evidence for an evolution in the richness of the environments of radio-loud quasars from other low-redshift studies to z >~ 0.9. The quasars associated with groups and clusters in our sample do not necessarily reside in the centre of the galaxy distribution which rarely displays a spherical geometry. Clustering is preferentially associated with small or asymmetric steep-spectrum radio sources. The quasars with the largest projected angular size are, in nearly all cases, found in non-clustered environments. Radio-based selection (including source size) of high-redshift groups and clusters can be a very efficient method of detecting rich environments at these redshifts. We find that in optical searches for galaxy overdensities above z ~ 0.6 multiple filters must be used. If the single-filter counting statistics used by groups at lower redshift are applied to our data, uncertainties are too large to make accurate quantifications of cluster richness. This means that genuine clustering of galaxies about quasars will be missed and, in ~10% of cases, putative clusters turn out to be false detections. The statistics are further diluted by the fact that galaxy overdensities are generally not centred on the quasar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا