Do you want to publish a course? Click here

Constraining the radio-loud fraction of quasars at z>5.5

229   0   0.0 ( 0 )
 Added by Eduardo Ba\\~nados
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio-loud Active Galactic Nuclei at z~2-4 are typically located in dense environments and their host galaxies are among the most massive systems at those redshifts, providing key insights for galaxy evolution. Finding radio-loud quasars at the highest accessible redshifts (z~6) is important to study their properties and environments at even earlier cosmic time. They would also serve as background sources for radio surveys intended to study the intergalactic medium beyond the epoch of reionization in HI 21 cm absorption. Currently, only five radio-loud ($R=f_{ u,5{rm GHz}}/f_{ u,4400AA}>10$) quasars are known at z~6. In this paper we search for 5.5 < z < 7.2 quasars by cross-matching the optical Pan-STARRS1 and radio FIRST surveys. The radio information allows identification of quasars missed by typical color-based selections. While we find no good 6.4 < z <7.2 quasar candidates at the sensitivities of these surveys, we discover two new radio-loud quasars at z~6. Furthermore, we identify two additional z~6 radio-loud quasars which were not previously known to be radio-loud, nearly doubling the current z~6 sample. We show the importance of having infrared photometry for z>5.5 quasars to robustly classify them as radio-quiet or radio-loud. Based on this, we reclassify the quasar J0203+0012 (z=5.72), previously considered radio-loud, to be radio-quiet. Using the available data in the literature, we constrain the radio-loud fraction of quasars at z~6, using the Kaplan--Meier estimator, to be $8.1^{+5.0}_{-3.2}%$. This result is consistent with there being no evolution of the radio-loud fraction with redshift, in contrast to what has been suggested by some studies at lower redshifts.



rate research

Read More

We carry out a series of deep Karl G. Jansky Very Large Array (VLA) S-band observations of a sample of 21 quasars at $zsim6$. The new observations expand the searches of radio continuum emission to the optically faint quasar population at the highest redshift with rest-frame $4400 rm AA$ luminosities down to $3 times10^{11} L_{odot}$. We report the detections of two new radio-loud quasars: CFHQS J2242+0334 (hereafter J2242+0334) at $z=5.88$ and CFHQS J0227$-$0605 (hereafter J0227$-$0605) at $z=6.20$, detected with 3 GHz flux densities of $87.0 pm 6.3 mu rm Jy$ and $55.4 pm 6.7 mu rm Jy$, respectively. Their radio replaced{loudness}{loudnesses} are estimated to be $54.9 pm 4.7$ and $16.5 pm 3.2$, respectively. To better constrain the radio-loud fraction (RLF), we combine the new measurements with the archival VLA L-band data as well as available data from the literature, considering the upper limits for non-detections and deleted{and} possible selection effects. The final derived RLF is $9.4 pm 5.7%$ for the optically selected quasars at $zsim6$. We also compare the RLF to that of the quasar samples at low redshift and check the RLF in different quasar luminosity bins. The RLF for the optically faint objects is still poorly constrained due to the limited sample size. Our replaced{result}{results} show no evidence of significant quasar RLF evolution with redshift. There is also no clear trend of RLF evolution with quasar UV/optical luminosity due to the limited sample size of optically faint objects with deep radio observations.
74 - Yali Shao , Jeff Wagg , Ran Wang 2020
We present Giant Metrewave Radio Telescope (GMRT) 323 MHz radio continuum observations toward 13 radio-loud quasars at $z>5$, sampling the low-frequency synchrotron emission from these objects. Among the 12 targets successfully observed, we detected 10 above $4sigma$ significance, while 2 remain undetected. All of the detected sources appear as point sources. Combined with previous radio continuum detections from the literature, 9 quasars have power-law spectral energy distributions throughout the radio range; for some the flux density drops with increasing frequency while it increases for others. Two of these sources appear to have spectral turnover. For the power-law-like sources, the power-law indices have a positive range between 0.18 and 0.67 and a negative values between $-0.90$ and $-0.27$. For the turnover sources, the radio peaks around $sim1$ and $sim10$ GHz in the rest frame, the optically thin indices are $-0.58$ and $-0.90$, and the optically thick indices are 0.50 and 1.20. A magnetic field and spectral age analysis of SDSS J114657.59+403708.6 at $z=5.01$ may indicate that the turnover is not caused by synchrotron self-absorption, but rather by free-free absorption by the high-density medium in the nuclear region. Alternatively, the apparent turnover may be an artifact of source variability. Finally, we calculated the radio loudness $R_{2500rm, AA}$ for our sample, which spans a very wide range from 12$^{+13}_{-13}$ to 4982$^{+279}_{-254}$.
We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 < z < 0.3$) optically selected QSOs. Our 176 radio detections fall into two clear categories: (1) About $20$% are radio-loud QSOs (RLQs) having spectral luminosities $L_6 gtrsim 10^{,23.2} mathrm{~W~Hz}^{-1}$ primarily generated in the active galactic nucleus (AGN) responsible for the excess optical luminosity that defines a emph{bona fide} QSO. (2) The radio-quiet QSOs (RQQs) have $10^{,21} lesssim L_6 lesssim 10^{,23.2} mathrm{~W~Hz}^{-1}$ and radio sizes $lesssim 10 mathrm{~kpc}$, and we suggest that the bulk of their radio emission is powered by star formation in their host galaxies. Radio silent QSOs ($L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$) are rare, so most RQQ host galaxies form stars faster than the Milky Way; they are not red and dead ellipticals. Earlier radio observations did not have the luminosity sensitivity $L_6 lesssim 10^{,21} mathrm{~W~Hz}^{-1}$ needed to distinguish between such RLQs and RQQs. Strong, generally double-sided, radio emission spanning $gg 10 mathrm{~kpc}$ was found associated with 13 of the 18 RLQ cores having peak flux densities $S_mathrm{p} > 5 mathrm{~mJy~beam}^{-1}$ ($log(L) gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple unified models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.
We have carried out multicolour imaging of a complete sample of radio-loud quasars at 0.6 < z < 1.1 and find groups or clusters of galaxies in the fields of at least 8 and possibly 13 of the 21 sources. There is no evidence for an evolution in the richness of the environments of radio-loud quasars from other low-redshift studies to z >~ 0.9. The quasars associated with groups and clusters in our sample do not necessarily reside in the centre of the galaxy distribution which rarely displays a spherical geometry. Clustering is preferentially associated with small or asymmetric steep-spectrum radio sources. The quasars with the largest projected angular size are, in nearly all cases, found in non-clustered environments. Radio-based selection (including source size) of high-redshift groups and clusters can be a very efficient method of detecting rich environments at these redshifts. We find that in optical searches for galaxy overdensities above z ~ 0.6 multiple filters must be used. If the single-filter counting statistics used by groups at lower redshift are applied to our data, uncertainties are too large to make accurate quantifications of cluster richness. This means that genuine clustering of galaxies about quasars will be missed and, in ~10% of cases, putative clusters turn out to be false detections. The statistics are further diluted by the fact that galaxy overdensities are generally not centred on the quasar.
Radio-loud quasars (RLQs) are known to produce excess X-ray emission, compared to radio-quiet quasars (RQQs) of the same luminosity, commonly attributed to jet-related emission. Recently, we found that the HeII EW and $alpha_{rm{ox}}$ in RQQs are strongly correlated, which suggests that their extreme-ultraviolet (EUV) and X-ray emission mechanisms are tightly related. Using 48 RLQs, we show that steep-spectrum radio quasars (SSRQs) and low radio-luminosity ($L_{rm R}$) flat-spectrum radio quasars (FSRQs) follow the $alpha_{rm ox}$--HeII EW relation of RQQs. This suggests that the X-ray and EUV emission mechanisms in these types of RLQs is the same as in RQQs, and is not jet related. High-$L_{rm R}$ FSRQs show excess X-ray emission given their HeII EW by a factor of $approx$ 3.5, which suggests that only in this type of RLQ is the X-ray production likely jet related.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا