Do you want to publish a course? Click here

X-rays from the Dawn of the Modern Universe. Chandra and XMM-Newton Observations of z>4 Quasars

116   0   0.0 ( 0 )
 Added by Cristian Vignali
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quasars at z>4 provide direct information on the first massive structures to form in the Universe. Recent ground-based optical surveys (e.g., the Sloan Digital Sky Survey) have discovered large numbers of high-redshift quasars, increasing the number of known quasars at z>4 to ~500. Most of these quasars are suitable for follow-up X-ray studies. Here we review X-ray studies of the highest redshift quasars, focusing on recent advances enabled largely by the capabilities of Chandra and XMM-Newton. Overall, analyses indicate that the X-ray emission and broad-band properties of high-redshift and local quasars are reasonably similar, once luminosity effects are taken into account. Thus, despite the strong changes in large-scale environment and quasar number density that have occurred from z~0-6, individual quasar X-ray emission regions appear to evolve relatively little.



rate research

Read More

143 - C. Vignali 2001
We report exploratory Chandra observations of 14 high-redshift (z=4.06-5.27), optically selected quasars. Ten of these quasars are detected, increasing the number of z>4 X-ray detected quasars by 71%. Our detections include four of the five highest-redshift X-ray detected quasars to date, among them SDSSp J021043.17-001818.4, the highest-redshift (z=4.77) radio-loud quasar detected in the X-ray band. The four undetected objects are the Broad Absorption Line quasars SDSSp J112956.10-014212.4 and SDSSp 160501.21-011220.0, the weak emission-line quasar SDSSp J153259.96-003944.1, and the quasar PSS 1435+3057. A comparison of the quasars spectral energy distributions (by means of the optical-to-X-ray spectral index, alpha_ox) with those of lower-redshift samples indicates that the Chandra quasars are X-ray fainter by a factor of approx 2. X-ray faintness could be associated with the presence of large amounts of gas in the primeval galaxies harboring these high-redshift quasars, as suggested by recent studies conducted on z>4 quasars in other bands. Using the current Chandra data, predictions for the next generation of X-ray observatories, Constellation-X and Xeus, are also provided.
61 - L.C. Bassett 2004
We present the results of Chandra observations of six radio-loud quasars (RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These observations cover a representative sample of RLQs with moderate radio-loudness (R ~ 40-400), filling the X-ray observational gap between optically selected RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the relationship between X-ray luminosity and radio-loudness for quasars at high redshift and constrain RLQ X-ray continuum emission and absorption. From a joint spectral fit of nine moderate-R RLQs observed by Chandra, we find tentative evidence for absorption above the Galactic N_H, with a best-fit neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2}, consistent with earlier claims of increased absorption toward high-redshift RLQs. We also search for evidence of an enhanced jet-linked component in the X-ray emission due to the increased energy density of the cosmic microwave background (CMB) at high redshift, but we find neither spatial detections of X-ray jets nor a significant enhancement in the X-ray emission relative to comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have basic X-ray properties consistent with comparable RLQs in the local universe, suggesting that the accretion/jet mechanisms of these objects are similar as well.
118 - A. Ptak , N. Zakamska , M. Strauss 2005
We are carrying out sensitive X-ray observations with Chandra and XMM of type II quasars selected from the Sloan Digital Sky Survey based on their optical emission line properties. We present observations of four objects at redshifts 0.4 < z < 0.8 and an analysis of the archival data for four additional objects in the same redshift range. Six of the eight were detected in X-rays; five of them have sufficient signal to derive spectral information. All of the detected sources have intrinsic luminosities L(2-10 keV) > 5 x 10^43 erg s^-1. The five with sufficient counts for spectral fitting show evidence for significant absorption (N_H >~ a few x 10^22 cm^-2). At least three of the objects likely have N_H > 10^23 cm^-2; some may be Compton-thick (N_H > 10^{24} cm^-2). In the five objects for which we could fit spectra, the slopes tend to be significantly flatter than is typically observed in AGN; it is possible that this is due either to reprocessing of the nuclear emission or to a line of sight that passes through patchy absorption.
X-ray bursts have recently been discovered in the Cepheids $delta$ Cep and $beta$ Dor modulated by the pulsation cycle. We have obtained an observation of the Cepheid $eta$ Aql with the XMM-Newton satellite at the phase of maximum radius, the phase at which there is a burst of X-rays in $delta$ Cep. No X-rays were seen from the Cepheid $eta$ Aql at this phase, and the implications for Cepheid upper atmospheres are discussed. We have also used the combination of X-ray sources and Gaia and 2MASS data to search for a possible grouping around the young intermediate mass Cepheid. No indication of such a group was found.
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of luminous low-mass X-ray binaries. After excluding these point sources, spectra were accumulated over a circular region of $6arcmin$ (1.2 kpc) centered on the nucleus. In the energy range above 2 keV, these residual spectra are understood mainly as contributions of unresolved faint sources and spill-over of photons from the excluded point sources. There is in addition a hint of a $sim 6.6$ keV line emission, which can be produced by a hot (temperature several keV) thin-thermal plasma. Below 2 keV, the spectra involve three additional softer components expressed by thin-thermal plasma emission models, of which the temperatures are $sim 0.6$, $sim 0.3$, and $sim 0.1$ keV. Their 0.5--10 keV luminosities within 6$arcmin$ are measured to be $sim 1.2 times 10^{38}$ erg s$^{-1}$, $sim 1.6 times 10^{38}$ erg s$^{-1}$, and $sim 4 times 10^{37}$ erg s$^{-1}$ in the order of decreasing temperature. The archival Chandra data of the central region of M31 yielded consistent results. By incorporating different annular regions, all the three softer thermal components were confirmed to be significantly extended. These results are compared with reports from previous studies. A discussion is presented on the origin of each thermal emission component.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا