No Arabic abstract
Maps of Galactic polarized continuum emission at 1408, 1660, and 1713 MHz towards the local Taurus molecular cloud complex were made with the Effelsberg 100-m telescope. Minima in the polarized emission which are located at the boundary of a molecular cloud were detected. Beside high rotation measures and unusual spectral indices of the polarized intensity, these features are associated with the molecular gas. At the higher frequencies the minima get less distinct. We have modelled the multi-frequency observations by placing magneto-ionic Faraday screens at the distance of the molecular cloud. In this model Faraday rotated background emission adds to foreground emission towards these screens. The systematic variation of the observed properties is the result of different line-of-sight lengths through the screen assuming spherical symmetry. For a distance of 140 pc to the Taurus clouds the physical sizes of the Faraday screens are of the order of 2 pc. In this paper we describe the data calibration and modelling process for one such object. We find an intrinsic rotation measure of about -29 rad/m^{2} to model the observations. It is pointed out that the observed rotation measure differs from the physical. Further observational constraints from H-alpha observations limit the thermal electron density to less than 0.8 cm^{-3}, and we conclude that the regular magnetic field strength parallel to the line-of-sight exceeds 20 micro Gauss to account for the intrinsic rotation measure.
Polarization observations at 21cm and 18cm towards the local Taurus molecular cloud complex were made with the Effelsberg 100-m telescope. Highly structured, frequency-dependent polarized emission features were detected. We discuss polarization minima with excessive rotation measures located at the boundaries of molecular clouds. The multi-frequency polarization data have been successfully modeled by considering magneto-ionic Faraday screens at the surface of the molecular clouds. Faraday rotated background emission adds to foreground emission towards these screens in a different way than in its surroundings. The physical size of the Faraday screens is of the order of 2 pc for 140 pc distance to the Taurus clouds. Intrinsic rotation measures between about -18 rad/m2 to -30 rad/m2 are required to model the observations. Depolarization of the background emission is quite small (compatible with zero), indicating a regular magnetic field structure with little turbulence within the Faraday screens. With observational constraints for the thermal electron density from H-alpha observations of less than 0.8 cm^-3 we conclude that the regular magnetic field strength along the line of sight exceeds 20 muG. We discuss some possibilities for the origin of such strong and well ordered magnetic fields. The modeling also predicts a large-scale, regularly polarized emission in the foreground of the Taurus clouds which is of the order of 0.24 K at 21cm. This amount of synchrotron emission is clearly excessive when compared to previous estimates of the local synchrotron emissivity.
The new generation of low-frequency radio telescopes, such as the Low Frequency Array (LOFAR: a Square Kilometre Array-low pathfinder), provides advancements in our capability of probing Galactic magnetism through low-frequency polarimetry. Maps of diffuse polarized radio emission and Faraday rotation can be used to infer properties of, and trace structure in, the magnetic fields in the ISM. However, to date very little of the sky has been probed at high angular and Faraday depth resolution. We observed a 5x5 degree region centred on the nearby galaxy IC342 using LOFAR in the frequency range 115-178 MHz at 4 arcmin resolution and performed Faraday tomography to detect foreground Galactic polarized synchrotron emission separated by Faraday depth (different amounts of Faraday rotation). Our Faraday depth cube shows rich polarized structure, with up to 30 K of polarized emission at 150 MHz. We detect two overlapping diffuse polarized features that are clearly separated in Faraday depth. Faraday-thick structures at such low frequencies would be too strongly depolarized to explain the observations and are therefore rejected. Only Faraday thin structures will not be strongly depolarized; producing such structures requires localized variations in the ratio of synchrotron emissivity to Faraday depth per unit distance, which can arise from several physical phenomena, such as a transition between regions of ionized and neutral gas. We conclude that the observed polarized emission is Faraday thin, and propose that the emission originates from two neutral clouds in the local ISM. We have modeled the Faraday rotation for this line of sight and estimated that the line of sight component of magnetic field of the local ISM for this direction varies between -0.86 and +0.12 uG. We propose that this may be a useful method for mapping magnetic fields within the local ISM.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large-Magellanic-Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young ($sim10$-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.
The interstellar medium is the engine room for galactic evolution. While much is known about the conditions within the ISM, many important areas regarding the formation and evolution of the various phases of the ISM leading to star formation, and its role in important astrophysical processes, remain to be explained. This paper discusses several of the fundamental science problems, placing them in context with current activities and capabilities, as well as the future capabilities that are needed to progress them in the decade ahead. Australia has a vibrant research community working on the interstellar medium. This discussion gives particular emphasis to Australian involvement in furthering their work, as part of the wider international endeavour. The particular science programs that are outlined in this White Paper include the formation of molecular clouds, the ISM of the Galactic nucleus, the origin of gamma-rays and cosmic rays, high mass star and cluster formation, the dense molecular medium, galaxy evolution and the diffuse atomic medium, supernova remnants, the role of magnetism and turbulence in the Galactic ecology and complex organic molecules in space.